
NASA Contractor Report 196695

New Approaches to Optimization
in Aerospace Conceptual Design

Peter J. Gage

Stanford University

Department of Aeronautics and Astronautics
Stanford, CA 94305

Prepared for
Ames Research Center
CONTRACT NAG2-640
March 1995

National Aeronautics and
Space Administration

Ames Research Center
Moffett Field, California 94035-1000

_ I

Acknowledgments

This work was primarily supported by NASA Ames, under Grant NAG 2-640.

Punding was also provided by NASA Langley, particularly under Grant NAG

1-1494 and Grant NAG 1-1558. This support is gratefully acknowledged.

Sincere thanks are due to my adviser, Ilan Kroo, who has always been en-

thusiastic about this work, and ready to discuss any detail of it. I relied on

his insight to clarify difficult issues, and to suggest creative approaches for this

research. Valuable advice and software support have been provided by John

Gallman, at NASA Ames, Bobby Braun at NASA Langley, and Ian Sobieski

at Stanford. Sean Wakayarna has rescued me from countless computational

nightmares. Steve Morris has helped to guide the investigation of genetic opti-

mization. I deeply appreciate the contributions of these colleagues.

Ill

I::'RECEDIF!_ _,_"_, ,-,,._--..D!.A_'K NOT FILME_

PAGEI_ INTENTIONALLY_J_NK

! !

Contents

Acknowledgments

Table of Contents

,,°

IU

V

List of Tables ix

List of Figures xi

Glossary xv

1 Introduction 1

1.1 Motivation 1

1.2 Integration of Analyses and Optimization Software 2

1.2.1 Analysis Requirements 2

1.2.2 Integration Methods 4

1.3 The Limited Scope of Calculus-Based Optimization 6

1.4 Fixed Complexity Problem Formulations 8

1.5 Thesis Outline 8

2 A Baseline Optimization System 11

2.1 Quasi-Procedural Method 12

2.2 Calculus-Based Optimization 15

2.3 Controlling Calculus-Based Optimization with the Quasi-Procedural

Method 18

2.3.1 Efficient Gradient Approximation 19

PRECED!_'qG PAGE _!.AHK [_iOT FILMED
PAGe" INTENFIONAt_.'i_.At_K

3

4

5

2.3.2 Ordering Design Variables 21

2.3.3 Removal of Iteration Loops in Analysis Subroutines . . 24

2.4 Application of the Baseline System To a Complex Problem . . 27

2.4.1 A Sample Problem 28

2.4.2 Modification of Analyses for Quasi-Procedural Execution 28

2.4.3 Performance of the Baseline System 33

2.5 Summary 36

A Simple Genetic Algorithm for Aerospace Design 38

3.1 The Genetic Search Mechanism 40

3.2 Limitations of Genetic Algorithms 43

3.3 A Simple Genetic Algorithm 45

3.4 Application to Spacecraft Trajectory Design 51

3.4.1 Background 51

3.4.2 One-Way Direct Earth to Mars 53

3.4.3 Roundtrip Earth to Mars, with Optional Venus Swingby 63

3.4.4 Simultaneous Investigation of Different Mission Types.. 65

3.5 Summary 67

A Variable-Complexity Genetic Algorithm 68

4.1 Motivation for Variable-Complexity Optimization 68

4.2 Variable-Length Encodings 71

4.2.1 Prior Use 71

4.2.2 An Encoding Scheme for Conceptual Design 73

4.2.3 An Extended Encoding Scheme for Varying Constraint

Activity 74

4.3 New Genetic Operators 75

4.4 Application to a Block-Stacking Task 78

Topological Design of Structural Trusses for Minimum Weight 83

5.1 Introduction to Structural Optimization 83

5.2 Standard Genetic Optimization of Structural Trusses 85

5.3 Variable-Complexity Genetic Optimization of Structural Trusses 86

vi

5.4 Applications 89

5.4.1 Nine nodes,one load point................. 89

5.4.2 Nine nodes,two load points................. 91
5.4.3 Michell truss......................... 93

5.5 Summary 96

Wing Topology Optimization for Minimum Drag

6.1

6.2

6.3

6.4

6.5

6.6

6.7

97

Motivation for Use of Genetic Optimization 98

Aerodynamic Analysis of Lifting Surfaces 99

Genetic Encoding 100

Constraint-Handling 101

6.4.1 Geometric Constraints to Permit Analysis 101

6.4.2 Lift Constraint 102

6.4.3 Span and Height Constraints 106

Optimization Results 108

6.5.1 Minimum Induced Drag 108

6.5.2 Minimum Parasite Drag 115

6.5.3 Summary of Results 116

Comparison with Calculus-Based Optimization 119

Summary 121

7 Genetic Optimization in the Quasi-Procedural Environment

7.1

7.2

122

Efficient Evaluation of the Population 123

7.1.1 Measuring Difference Between Population Members . . 124

7.1.2 Performance of the Ordering Scheme 125

Computational Path Generation 127

8 Conclusions and Suggestions for Future Work 130

8.1 Conclusions 131

8.1.1

8.1.2

8.1.3

8.2

Integration of Analyses and Optimizers 131

Optimization Algorithms 131

Flexible Parameterization 132

Suggestions for Future Work 133

vii

A Technical Details of Quasi-Procedural Architecture 135

A.1 The Quasi-Procedural Method 135

A.2 Consistency Maintenance 137

B A Genetic Optimization Package

B.1

B.2

B.3

B.4

B.5

145

Operators of Genetic Optimization 145

The Optimization Problem 151

Input and Output 153

User-Specified Input Parameters 154

User-Supplied Subroutines 156

Bibliography 158

..°

VII!

!_!I !

List of Tables

2.1 Optimization efficiency with accurate line-search 23

2.2 Optimization efficiency with inaccurate line-search 23

3.1 Function evaluations for different search methods 55

3.2 Function evaluations for different problem sizes 64

3.3 Locating global optima of different type 66

6.1 Function evaluations for different search methods 104

6.2 Levels of parasite drag 115

A.1 Summary of consistency information 141

ix

'!! I!

List of Figures

1.1

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10

2.11

2.12

2.13

Cost committed and actual funds spent on a typical aircraft project.

(From Ref. [31)

Elements of baseline system 12

A simple wing design problem 14

Convergence history for different calculus-based algorithms... 18

Standard and lazy finite-difference schemes for gradient estimation. 20

Quasi-procedural savings in gradient estimation for wing design

task 22

Quasi-procedural savings in gradient estimation for aircraft syn-

thesis task 25

Replacement of iteration loop with design variable and constraint. 26

Optimization of mid-sized transport aircraft 29

Identification of inputs and outputs 30

Insertion of calls to communicate with the central database. . . 32

Generation of project file 32

Relative computation times for complete optimization 34

Relative computation times for one iteration 36

3.1 The natural evolution of flying devices inspires the development

of a genetic algorithm 39

3.2 A standard genetic algorithm, illustrating the roles of selection,

reproduction and crossover 43

3.3 Decoding a genetic string 46

3.4 Crossover 48

xi
PRECED;NG P/',CE [:LANK NOT FILMED

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

3.13

3.14

3.15

3.16

3.17

Mutation 49

Earth to Mars mission 53

Design space for Earth to Mars mission 54

Population distribution, Generation 1 56

Population distribution, Generation 10 56

Population distribution, Generation 20 57

Population distribution, Generation 30 57

Surface mesh of initial mass in LEO, 95% infeasible 58

Population distribution, Generation 30, 95% infeasible 59

Population distribution, Generation 50, 95% infeasible 59

Sharing without mating restriction. Generation 30. K = 1.0 61

Sharing with mating restriction. Generation 30. K = 1.0 61

Sharing with mating restriction. Generation 30. K = 0.025 . . . 62

4.1 Natural evolution, like aerospace vehicle design, proceeds from

simple descriptions to complex specialization 70

4.2 A variable-complexity genetic algorithm 76

4.3 Modified crossover operator 77

4.4 The block-stacking problem 78

4.5 Deception makes poorly placed lower blocks appear to provide a

good foundation for further stacking 79

4.6 Fitness of best individual in population 80

4.7 Growth in height of best individual. (40-block maximum height) 81

5.1 Decoding a triplet of the genetic string 88

5.2 Optimization histories for single end load 90

5.3 Optimization histories for two load points 91

5.4 History of best individual in population 92

5.5 Michell truss for single end load 93

5.6 History of best individual in population 94

5.7 Final designs from different runs 95

6.1 Panel representation of lifting surface 99

xii

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

6.14

Influenceof penalty weight 103

Wing topology designwith spanand height constraints...... 106

Decodingthe extendedgeneticstring 107

History of best individual in population for standard genetic al-

gorithm , 109

History of best individual in population for variable-complexity

algorithm with regular encoding.................. 111

History of best individual in population for variable-complexity

algorithm with extendedencoding................. 112

Superpositionof all right half-wingsin population......... 113

Optimization histories for minimum induced drag. C4p -- 0.000 . 114

Optimization histories. Case 1. Cdp = 0.004 116

Optimization histories. Case 2. Cd_ = 0.010 117

Comparison of optimal topologies for different levels of parasite

drag 118

Calculus-based optimizer is trapped at local minima 120

Final refinement by gradient-based optimizer. 120

7.1 Best arrangement of variables to minimize computation required

to evaluate the population 126

7.2 Alternative computation paths for MinStability depend on spec-

ification of WingPosition 128

A.1 Quasi-procedural method may be triggered by user or subroutine. 135

A.2 Quasi-procedural method executes only the necessary subroutines. 136

A.3 Flow diagram for the GET subroutine 138

A.4 Recursive calls to the GET subroutine during path construction. 139

A.5 Consistency information is developed for the shaded subroutines

and associated variables 140

A.6 Partial dependence in quasi-procedural consistency maintenance. 142

A.7 Updating consistency information when input variable VarMod

has been modified 144

xiii

B.I Flow diagram for geneticsoftware................. 146

B.2 Pseudo-codefor decodinga geneticstring............. 147
B.3 Pseudo-codefor tournament selection............... 148

B.4 Pseudo-codefor crossover...................... 149

B.5 Pseudo-codefor mutation...................... 150

xiv

Glossary

Building block: Substrings (sections of genetic string) which correlate strongly

with above-average fitness. A genetic string containing a good building block

should produce a design of relatively high fitness.

Calculus-based: An optimization method which uses gradient information to

guide the search for improvement.

Candidate design: A particular design, or set of values for the design pa-

rameters, which is evaluated during optimization.

Constraint: An equality or inequality relation which must be satisfied by

solutions to an optimization task.

Convergence: A sequence of optimizer steps converges when iteration i + 1

produces the same output as iteration i.

Crossover: A genetic operator which recombines sections of the genetic string

from two parent designs, to produce a new design which includes features from

both parents.

Deceptive: A design space where combination of building blocks from differ-

ent parents, expected to produce offspring with improved performance, actually

degrades fitness.

XV

Design space: The N-dimensional space (where N is the number of design

variables) in which the optimizer searches for the best design.

Design variable: One of the parameters used to describe the design, the value

of which can be varied by the optimizer during search for improvement.

Encoding: A mapping between the phenotype (particular design) and geno-

type(genetic string). The genetic string is decoded to produce the actual design.

Environment: The conditions in the region of a particular design, charac-

terized according to constraint activity and to the sensitivity of the objective

function to changes in design variable values.

Epistasis: Coupling of design variables. Appropriate value for one design

variable depends on value for another variable. Epistasis produces a nonlinear

search space.

Evolution: Continuous genetic adaptation of organisms to the environment.

Evolution strategy: A search algorithm based on the operators observed in

natural evolution. Minimal set of operators includes selection and mutation.

Expert system: A set of rules which formalizes the expertise of a human,

represented in a computer so that the problem-solving ability of the expert can

be approximated by the automated system.

Expression: The decoding of a section of a genetic string. Information con-

tained in the genetic string, but not decoded, is not expressed.

Extended encoding: A genetic string which contains several values for each

variable. Only one of the alternative values is expressed.

Feasible: A design which satisfies all constraints.

xvi

|

Generation: The group of candidate designsproduced by an iteration of a

geneticalgorithm. Each iteration producesa new generation.

Genetic algorithm: A searchalgorithm basedon the operators observedin

natural evolution. Minimal set of operators includes selection, mutation and

crossover.

Genetic string: A concatenatedlist of encoded design variables.

Global optimum: The point in design space which has the best value of the

objective function while satisfying all constraints.

Gradient-based: An optimization method which uses gradient information

to guide the search for improvement.

Infeasible: A design which violates one or more constraints.

Local optimum: A design point which has a better value of the objective

function than all neighboring points, and satisfies all constraints.

Mating restriction: A restriction on recombination of genetic strings from

different designs. Some designs are prevented from mating with each other.

Mutation: A modification of the value at a locus (or several loci) in a genetic

string.

Natural selection: The survival of the relatively fit, resulting in the adapta-

tion of a species to its environment.

Objective function: A scalar figure of merit, used to rank alternative designs.

Optimization: A formal process for seeking improvement by modifying the

values of design variables.

xvii

Parameterization: The modeling of a physical design by a set of parameters.

The chosen parameters are used as input variables for analysis software which

estimates performance parameters for the design.

Penalty function: A function which reflects violation of a constraint. Penalty

functions are appended to the objective function, so that a constrained problem

is described as an unconstrained problem with a modified objective.

Population: A group of candidate designs which exist together. Members of

the population compete to participate in reproduction.

Recombination: The collection of sections of genetic encoding from different

parent strings, and the assembly of those sections into a new genetic string.

Repair: A constraint-handling scheme, in which the values of design variables

are systematically modified to ensure constraint satisfaction prior to evaluation

of the objective function.

Reproduction: Selected genetic strings participate in the creation of a new

generation of candidate designs.

Roulette-wheel selection: The probability of a given design being selected

for reproduction is given by the ratio of its fitness value to the sum of fitness

values for the entire population.

Schema: Similarity template describing a subset of genetic strings which share

identical values at specified loci in the string.

Selection: The choosing of a design from the current population. Selection

criteria are related to the fitness of competing designs.

xviii

:11

Sharing function: A function usedto degradethe fitnessof a candidate de-

sign when other candidate designsare very similar (nearby in design space).

Thesefunctionsareusedto encouragethe formation of separatesub-populations,

by penalizing a tight cluster of manypopulation members.

Simulated annealing: A randomizedsearchmethod basedon analogy with

the annealing of metals. Modifications to the current design are randomly di-

rected, but the maximum change is reduced as the number of iterations increases,

according to an artificial annealing, or cooling, schedule.

Species formation: The formation of distinct subpopulations, which cluster

around different local minima in the design space.

Termination criteria: Conditions for terminating optimizer search.

Topology: The geometry of the design space.

Topological optimization: Optimization of the set of parameters describ-

ing a design, rather than optimization of the shape and size of a fixed set of

parameters.

Tournament selection: A selection scheme in which several population mem-

bers are randomly selected to participate in a tournament. The candidate design

with highest fitness wins the tournament, and is selected.

Variable-complexity parameterization: The number of parameters used

to describe a design can change during optimization, which corresponds to a

change in complexity of the design being described.

Variable-length string: A genetic string which can change length. This

means that the amount of encoded information can change during optimization,

and the complexity of candidate designs can vary.

xix

Chapter 1

Introduction

1.1 Motivation

The standard methodology used in aerospace design is, in a broad sense, an

optimization process. A parametric description of a concept is generated, and

informed judgement is used to estimate appropriate initial values for the pa-

rameters. A merit function is defined, and minimum performance requirements

are specified. The proposed design is evaluated by analysis, and improvement

is sought by systematic modification of the parameters.

The suitability of a formal optimization approach to aerospace design has

long been recognized. When Ashley surveyed aeronautical uses of optimization

in 1981 [1], more than 8000 relevant journal articles, reports and dissertations

were found. One conclusion from that survey was: "At the preliminary design

stage, optimization has great potential as a sound way of choosing among al-

ternative concepts". Hundreds of academic publications related to aeronautical

optimization continue to be produced each year, yet multidisciplinary optimiza-

tion remains underutilized by industry [2]. In this chapter, the following three

issues that have restricted the effectiveness of automatic search for design im-

provement are discussed:

• Integration of analyses and optimizers

• The needof calculus-basedoptimization algorithms for accurate gradient

information and a smooth searchspace

• Fixed parameterization of the design

These issues are discussed in the next three sections of this introduction. New

approaches which address these deficiencies of existing systems are introduced

in the thesis. Each new development is compared with existing methodology,

by application to tasks for which optimization results have been reported in the

literature. These applications include aircraft synthesis studies, interplanetary

trajectory design, structural design of trusses, and aerodynamic design of lifting

surfaces. They demonstrate the advanced search capability of the new system,

and its suitability for diverse design studies.

1.2 Integration of Analyses and Optimization

Software

Large assemblies of complex analysis modules are required for adequate as-

sessment of proposed aeronautical configurations. The system that links them

together should permit introduction of new modules to assess advanced tech-

nologies. The environment should be flexible, to allow the user to explore freely

a wide range of concepts. Efficient execution of analyses is also vital, because

thousands of performance evaluations are required for large optimization tasks.

In this section, the necessity for a complex system is first explained, and then

methods for integrating the system components and controlling their interaction

are discussed.

1.2.1 Analysis Requirements

Analysis methods that predict performance with great precision are essential

tools for aircraft designers. Development costs for aerospace designs are huge,

and most of the outlay is committed very early in the design process (Fig. 1.1).

2

1i _lli

New aircraft designsoften haveonly a narrow expectedcompetitive advantage

overexisting alternatives. It can be financially disastrousif it is found, at the

detailed designstage (or later), that the predicted performanceadvantagewas

dueto inaccuraciesin the preliminary assessment,and cannot be realisedin the

final product.

100.

90.

80.

70.

_ 50.

_ 4o.

r_ 30.

20.

10.

O,

Figure 1.1: Cost committed and actual funds spent on a typical aircraft project.

(From Ref. [3])

The requirement for accurate analysis is complicated by the tight coupling

of aircraft components, which makes it difficult to isolate the influence of any

single departure from an existing configuration. The importance of exhaustive

analysis is strikingly demonstrated in a study of the joined wing concept. Gall-

man [4] found that a joined-wing designed for cruise alone could produce 11%

better performance than a conventional configuration designed for cruise alone,

but takeoff rotation constraints caused the joined-wing, optimized for the full

mission, to be marginally worse than a standard configuration.

Historically, the need for rapid assessment of the entire aircraft has meant

that analysis methods must be quite simple, so algebraic and statistical relations

3

havebeencommonlyapplied [5,6, 7]. Thesestatistical methodsincorporate em-

pirical knowledgefrom previous,similar aircraft. The predictive accuracyof the

tools is thereby improved, but their range of application is severely limited.

Novel conceptscannot be evaluatedwith similar precision, and the consequent

developmentrisks are too great to justify seriousinvestigation beyond the con-

ceptual designphase. The complexity of analysis tools for preliminary assess-

ment of aerospaceconcepts has rapidly increased, in step with the explosive

growth in computational capacity available to designers. It is now possible to

construct a multidisciplinary system that usesanalysesbasedmore on physical

principles rather than simple statistical correlations. This broadens the range

of conceptsthat can be accurately assessed,but increasesthe complexity of a

systemthat must be integrated, yet flexible, extensible,and efficient.

1.2.2 Integration Methods

Management of the complex analysis modules used in aerospace design is a chal-

lenging task. Various approaches have been proposed, and several of them are

incorporated in existing systems. A categorization of integration architectures

is described here, and the merits of different methods are discussed.

Techniques for linking independent programs are categorized in four groups:

close-coupled interfacing, close-coupled integration, loose-coupled interfacing

and loose-coupled integration [8]. Close-coupling fixes the execution path at

compilation, whereas loose-coupling allows execution to be adapted at run-time,

as analysis requirements are altered. Interfacing uses intermediate files to com-

municate between modules, while integration uses shared memory to transfer

information.

Close-coupled integration provides efficient execution, but it produces inflex-

ible systems that are difficult to extend. Synthesis programs that are developed

for a single task, and are small enough to be created and maintained by an

individual, can use this approach. Modern systems for general aerospace design

rely on loose-coupling to link independent analysis modules [8, 9, 10, 11]. In-

terfacing is used when the source code for an existing module is not available,

4

becauseknowledgeof the internal structure of the module is not required [9, 10].

When the source code of the analysis modules is available, integration provides

a more efficient method for transferring information. It requires the insertion of

additional code into each existing source module, to permit direct communica-

tion with a central database which contains all data shared between modules.

Automated procedures to guide the insertion of additional code into a complex

existing program should be provided [8], but they are often not included with

the database system.

Although loose-coupled integration allows the execution path through the

synthesis program to be modified, most executives require the user to supply the

relevant procedure. The user must have detailed knowledge of the dependencies

between modules, to avoid executing subroutines before their input variables

have been computed by another routine. The flexibility of the system is increased

by automatic generation of the necessary computational path.

Paper-Airplane [14, 15] uses a non-procedural constraint-propagation method

to control execution of modules. It is limited by the need for invertible functions,

and the need for user-specified design functions, which describe the sequence of

operations that compute each database variable. The procedures generated by

this executive can be inefficient, because they update all variables invalidated

by a modification to the database, even when the user is interested only in a

few outputs.

The quasi-procedural program architecture [16, 17, 18], employs a consis-

tency maintenance scheme to control execution. The user simply requests the

value of any variable that can be computed, and the system identifies and runs

only the modules needed to make that result valid. Execution efficiency of the

analyses is thereby maximized, although the consistency maintenance scheme

contributes some additional overhead for the database system. A synthesis sys-

tem that links algebraic and statistical analyses with a simple calculus-based

numerical optimizer, and is controlled by the quasi-procedural executive, was

developed and tested by Takai [16]. Impressive performance was achieved for

severaldesigntasks. Similar efficiencyfor large-scaledesignsystems,and incor-

poration of existing complexanalysesin this databaseframework, is reported in

this thesis, to assessthe generalpracticality of this integration method.

1.3 The Limited Scope of Calculus-Based Op-

timization

Most aerospace design programs use calculus-based optimization algorithms.

These techniques have a well-established mathematical basis. Convergence con-

ditions are well-specified, so termination criteria are easily checked. Calculus-

based algorithms search efficiently, and they are guaranteed to locate an opti-

mum when the search domain is appropriate.

Unfortunately, the restrictions on acceptable search domains cause severe

difficulties for practical engineering applications of these algorithms. Their ef-

ficiency derives from the use of gradient information to guide the search, but

accurate gradient information is often unavailable. Variation of calculated out-

put may not be smooth due to numerical inaccuracy. Linear interpolation of

tabular data, or piecewise linear functions such as the standard atmosphere, can

produce sudden changes in gradient value. The gradient is not even defined for

discrete-valued variables, such as number of engines or number of passengers.

Analytic derivatives are rarely available in complex engineering programs,

so finite-differencing is used to estimate gradients. The cost of these estimates

scales with the number of design variables, so finite-differencing becomes expen-

sive for large problems. The limited precision of estimated derivatives can also

affect the accuracy of search.

Calculus-based optimization algorithms tend to have difficulty when the

initial design is far from the optimum [19], particularly when constraints are

severely violated. They search from a single point, and use local information to

choose the direction of improvement. They are not guaranteed to find a global

optimum, and in multi-modal domains they will generally be trapped in a local

optimum close to the starting point.

Somelimitations of calculus-basedoptimization can be alleviated using ex-

pert knowledgeof the domain and the search algorithm. Several investiga-

tors [10, 16, 20, 21] have introduced expert systems to help inexperienced de-

signers to generate reasonable starting points for the numerical optimizer, or to

provide advice when the optimizer terminates at an unacceptable point. These

goals have been satisfactorily achieved in a number of design environments, but

the degree of success depends on the quality of the rules tailored for each domain.

They are similar to the statistical correlations used in simple analyses, because

the rules are generally based on practical experience with existing designs and

are consequently less useful when applied to new configurations. Expert systems

also do not help when gradient information is not available.

Alternative search techniques are required for multi-modal problems, non-

smooth (even discontinuous) topologies, and domains in which the data are

noisy. Genetic algorithms provide an alternative methodology for these cir-

cumstances [22]. There have been several aeronautical applications of genetic

algorithms, and mixed results have been obtained. Significant success in control

system optimization by genetic methods has been achieved by Krishnakumar

and co-authors [23, 24]. Hajela [25] has performed structural optimization in

nonconvex spaces, although convergence was very slow even for problems with

only a few design variables, and difficulties with constraint-handling were noted.

Bramlette and Cusic [26] used a genetic method for the parametric design of

aircraft, but its performance was generally inferior even to simulated annealing

unless a special mutation operator was introduced. Crispin [27] used a genetic

algorithm for aircraft conceptual optimization, but the populations seemed to

converge prematurely to a sub-optimal design. Tong [9, 10] has employed a ge-

netic algorithm in the preliminary design of turbines, although the method was

applied only when gradient techniques had stalled. Even then it simply shifted

the system away from constraint boundaries, so that gradient methods could be

effectively resumed. The various outcomes of these applications indicate that

the use of a genetic algorithm is not universally appropriate. A more general

investigation into the potential role of genetic searchin aerospaceconceptual

designis conductedin this thesis.

1.4 Fixed Complexity Problem Formulations

The design space available to automated search algorithms is prescribed by the

user's formulation of the problem. For numerical optimization, the space is de-

fined by the parameters chosen as design variables. Parameters that describe

general functional components, such as lifting surface, permit investigation of a

wider range of concepts than parameters that refer to specific physical compo-

nents, such as wing and tail. Object-oriented formulations have been introduced

in recently-developed design systems [13, 15], to allow a wider range of configu-

rations to be investigated.

Even when a general parameterization is used, standard optimization algo-

rithms operate on a fixed set of design variables. They are able to locate the

best values for those variables, but they cannot change the set. The design

description has constant complexity throughout the optimization process, even

if the analysis complexity is changed [28]. A sequence of separate optimiza-

tion studies can be performed, with the complexity being increased for each

run, but a richer algorithm would allow the description of candidate designs to

be altered during optimization. Successful features can be identified in simple

designs, which subsequently evolve into designs of greater complexity. This is

similar to the process used by designers, who generally determine parameters

such as wing area and span before choosing airfoil sections. Development of an

algorithm with this capability, which considerably extends the range of design

tasks handled by automated search, is reported in this work.

1.5 Thesis Outline

The current investigation of optimization for aerospace conceptual studies be-

gins with the development of a baseline analysis management and optimization

8

system,which incorporates the best features from programs describedin this

chapter. When the performanceof this systemhasbeenestablished,new opti-

mization methods,basedon evolutionary strategies,are introduced. They are

shownto significantly expand the range of designtasks that can be addressed

by formal optimization approaches.Integration with the quasi-proceduralexec-

utive improvesflexibility of operation and efficiencyof execution for thesenew
methods.

Chapter2beginsby briefly describingthe keyfeaturesof the quasi-procedural

architecture. A surveyof calculus-basedoptimizers is presented,and a sequen-

tial quadratic programmingalgorithm is chosenfor the baselinesystem. Imple-

mentation details of the optimizer are modified to exploit the efficiencyof the

quasi-proceduralmethod. The structure of the analysissubroutinesis shownto

have a strong impact on optimizer performance. Complex analyses,including

a vortex-lattice aerodynamicmodel and a finite element structural model, are

integrated into the system.A comparisonis madebetweenthe quasi-procedural

executiveand a standardprocedural method.

A standard genetic algorithm is studied in Chapter 3, becausethis class

of optimizer has been claimed to be robust and effective in a wide range of

domains. Critical evaluation of the statistical mechanismat the heart of ge-

netic optimization revealsthat thesemethods are sensitiveto the topology of

the designspaceand to the details of specificproblem implementation. Appli-

cations to spacecrafttrajectory developmentdemonstrate the influence of the

constraint-handling method on optimizer performance. Non-standard specia-

tion and mating restriction operators increasethe utility of the basic genetic

algorithm.
Calculus-basedmethods and standard genetic algorithms all operate on a

fixed set of designvariables. A description of all possibleelementsmust be ex-

plicitly includedin the geneticstring throughout the optimization process,even

when the best parameter set is not known a priori. A modifed genetic algo-

rithm is developed, to permit the number of design variables to change during

optimization. The new algorithm is described in Chapter 4, and an applica-

tion to a simple block-stacking problem illustrates the fundamental advantage

of increasing complexity during optimization.

Standard genetic algorithms have been used by several researchers for topo-

logical design of trusses. In Chapter 5, the performance of the variable-complexity

algorithm is directly compared with earlier results in this domain. The new al-

gorithm allows the use of a simpler encoding, which greatly reduces the search

effort required to reach the optimum. A calculus-based optimizer is used to

identify the best values of continuous variables each time a candidate design is

evaluated by the genetic algorithm.

Chapter 6 describes the application of the variable-complexity genetic algo-

rithm to aerodynamic design of wings. Careful constraint-handling is essential

to avoid premature convergence to a sub-optimal design. A new encoding of

the variables in the genetic string allows adaptation in response to changing

constraint activity during optimization. The algorithm successfully identifies

the nature of the optimal design, but final convergence to the exact solution is

better achieved by switching to a gradient-based method.

The influence of the quasi-procedural executive on the genetic optimizers is

explored in Chapter 7. The flexibility of operation is enhanced, just as it was

for calculus-based methods. Execution efficiency improves when the population

is arranged so that similar designs are evaluated consecutively.

The key requirements for successful optimization in the conceptual design

environment are summarized in Chapter 8. Emphasis is given to the new capa-

bilities introduced in this thesis. The benefits of combining different algorithms

into hybrid optimization methods are discussed. Finally, suggestions are pro-

vided for further investigation into the role of automated search in the design

process.

10

Chapter 2

A Baseline Optimization System

The primary goal of this chapter is to develop a system that provides a con-

venient and efficient environment for design studies using optimization. The

importance of flexible and extensible integration of analyses was discussed in

the introduction, and the quasi-procedural architecture, developed by Takai and

Kroo [16, 17, 18], was identified as an executive that provided these features. Im-

provements to the pilot version of this architecture are described in this chapter,

and the enhanced executive is included in the baseline optimization system.

A survey of calculus-based optimization methods is included here. NPSOL [31],

an implementation of the sequential quadratic programming algorithm, is se-

lected as the best available software. Minor modifications to the optimizer are

introduced, to exploit the efficiency of the quasi-procedural executive.

Complex analyses for the design of a medium-range commercial transport

aircraft are incorporated in the system to demonstrate its capability. Existing

modules, which use vortex-lattice modelling for aerodynamic prediction and

finite-element analysis for structures, and were previously close-coupled, must

be modified to communicate through the database. The key steps required to

automate this modification are presented. The computational efficiency and

overhead cost of the quasi-procedural executive are compared with standard

procedural execution. This study establishes that the baseline design system

provides an excellent environment for optimization.

ll

2.1 Quasi-Procedural Method

The quasi-procedural method differs from conventional programming architec-

tures in that the program is not strictly procedural. While a conventional pro-

gram proceeds from all of the inputs to all of the outputs, a quasi-procedural

program invokes only the subroutines required to produce a valid value for an

output variable requested by the user. The necessary sequence of subroutines is

constructed in reverse order, starting with the subroutine to be executed last,

and stepping back to the subroutine to be executed first. The quasi-procedural

method is named for this automated construction of an efficient computational

path, which precedes procedural execution. A more detailed description of the

path generation is included in Appendix A.

A design system that uses the quasi-procedural method has three parts:

analysis subroutines, a database to store the parameters that define the design

task, and an executive system that integrates the analyses and controls their

execution. Automatic search tools and a user interface are included in the

executive.

Input File

Parameters

for database

TASK-

SPECIFIC

User Interface

Quasi-Procedural
Executive

Automated

Search Tools

GENERIC

I
I

Analysis
Subroutines

DOMAIN-

SPECIFIC

Figure 2.1: Elements of baseline system.

12

71il i

The analysissubroutines,or modules, are written in standard Fortran77,

except that inputs and outputs are passedto and from the central database

using simple calls to executivesubroutines. Details of these communication

subroutines, and the structure of the database,are describedin Appendix A.

The centraldatabaseholdsthe inputs andoutputs of the analysissubroutines. It

acts asa bufferbetweenindividual modules,sothat changinga singlesubroutine

doesnot require modification of routines with which it sharesinformation. It

also reducesthe numberof interfacesbetweenprogram modules. For n analysis

modules, there are n interfaces with the database (one for each module). If

modules are connected directly, each might be connected to all others, so the

number of interfaces increases as n(n- 1)/2. The maintenance of large collections

of complex analyses is greatly simplified by communicating through a central

database.

The executive controls interactions between analyses and the database, and

monitors the validity of variables. A subroutine is only run when an output is

required in a calculation, but the value in the database is not valid. At that

point, the executive looks up the name of the analysis routine that produces

the required output, and issues a command to run the routine. In contrast to

a conventional program which runs top down, from all of the inputs to all of

the outputs, a quasi-procedural program uses the database to build a sequence

of routines that will produce the required outputs given the available inputs.

In the event that no such path is available, the system will indicate the extra

inputs that must be provided.

Figure 2.2(a) illustrates a simple wing design task. The goal is to maintain

high theoretical span efficiency, u, at the desired lift coefficient, CL,._q, while

achieving a relatively uniform loading, C_(y). The objective function is:

J : (-u) + (CL,._ - eL) 2 + [_(1 - 6/4)2] _
CL

A vortex-lattice representation is used to describe the wing. Bound vortices are

located at the quarter-chord line, and a control point lies at the semi-span and

three-quarter-chord point of each panel.

13

Figure 2.2(b) indicatesthe computationalpath. The boxesrepresentanalysis

modules, with AICS calculating aerodynamic influence coefficients,DECOMP

decomposingthe systemof linear equations,and FORCEScalculating the aero-

dynamic forcesproduced by a specified incidencedistribution. The computa-

tional path is indicated by the arrows that connect the boxes,and the design

variables (Taper, Incidence and a [angle-of-attack]) are shown as inputs to

the routines that they affect. The subroutines called by the quasi-procedural

method depend on the validity of the different inputs. If a Incidence input is

modified, only FORCES is called, but if Taper is modified, AICS and DECOMP

must also be invoked.

Taper Control points
0_

20 Panel Incidences

Maximize theoreOcal span efficiency, u

Constraints

CL= 1.0

C l = constant

(a)Vc_ex-lattice representation

Taper

I csl

IOE O P!

I

C L {Cl}

Co) Computational path

Figure 2.2: A simple wing design problem.

This is convenient for coding, because the programmer is not responsible for

calling subroutines in the Correct sequence. The method is also efficient, because

it updates only the outputs invalidated by changes to inputs. Any output that

is unaffected by new input values is recognised as valid, so it is not recomputed.

During preliminary design it is common to perform calculations repeatedly, with

14

only small modifications to the input set for each new calculation. Theseop-

erations are exactly the type most efficiently handled by the quasi-procedural

system. Takai demonstratedthe efficiency of the basic quasi-proceduralexec-

utive for preliminary designcalculations. The interaction between executive

and optimizer is examinedcarefully here, to ensurethat maximum efficiency is

achieved.Calculus-basedalgorithmsaresurveyedin the next section,to identify

the best availableoptimization method, and the chosenimplementation is then

modified to enhanceits efficiency.

2.2 Calculus-Based Optimization

The next step in building the baseline system is the selection and incorporation of

an appropriate optimizer. The mechanism of gradient-based search is described

here, and the relative merits of several algorithms are discussed. The sequential

quadratic programming method, which handles constraint gradient information

directly, outperforms the variable metric method used by Takai, which uses

penalty functions to handle constraint violations.

Numerical optimization proceeds by evaluating a sequence of points in design

space, using information from previous evaluations to guide selection of new

designs. Each candidate point is characterized by a number of design variables,

which are selected from the input variables of the analysis system. The merit

of each design is measured by an objective function and constraint functions,

which are outputs of the analysis system.

Calculus-based optimizers have two distinct phases in each iteration: they

select a search direction, and then perform a line search in that direction, from

the current design to a new design with superior performance. This process is

repeated until no direction of improvement can be found. The gradient infor-

mation is used in the selection of the search direction.

A variable metric algorithm, which is recommended for general engineer-

ing design applications [19] was used previously in conjunction with the quasi-

procedural architecture [16]. This method uses gradient information, and also

15

builds an approximation to the Hessian(curvature information) as the search

continues. The problem with the current implementation of this algorithm is

that the constraints arehandledby application of an exterior quadratic penalty
function. This meansthat the descentfunction is:

J = J_,_o_ + PenWt x C(x)TC(x)

Here, J is the objective value, J_,_o,_ is the unconstrained objective value,

PenWt is a user-specified weighting factor, and C(x) is the constraint viola-

tion function. The efficiency of the algorithm depends strongly on the choice of

the penalty weight [19]. The weight should be increased as optimization pro-

ceeds, but not too rapidly, because a current design that violates constraints

may be trapped outside the feasible region, making convergence to the optimum

impossible. Numerical difficulties may arise as the value of the penalty param-

eter increases, because the Hessian becomes ill-conditioned (the curvature near

the constraint boundary becomes very large as the penalty parameter increases).

Interior penalty functions may be used to prevent the solution from being

trapped in the infeasible region, but they require a feasible starting point, and do

not permit the use of equality constraints. Extended interior penalty functions

combine interior and exterior penalties to overcome some limitations of each

penalty type. However, interior and extended interior methods require that the

penalty being applied should increase as the optimization proceeds, so problems

due to ill-conditioning of the Hessian arise for these methods, too [33].

The penalty method described above is an example of a transformation

method, in which the constrained problem is converted to an unconstrained

one. There are several standard algorithms that directly use information about

the constraint gradients when calculating new search directions. These include

sequential linear programming, sequential quadratic programming, feasible di-

rection methods and reduced gradient methods. All of these methods are widely

discussed in the literature [19, 35, 33, 34]. One of the most promising of these

methods is sequential quadratic programming, which has been encoded in the

NPSOL software package developed at Stanford Univerity's Optimization Labo-

ratory [31]. This method searches for stationary points of a Lagrangian function.

16

The Lagrangian may be augmentedby the addition of a penalty term, which

ensuresthat the systemsearchesfor a minimum point. When accurateLagrange

multipliers are used, the penalty weight neednot be large, which meansthat

the problem can be better-conditioned than a formulation which relies purely

on penalty functions [33].

As suggestedby the name of the method, the searchfor the minimum of

the Lagrangian involvesa sequenceof quadratic programming problems. Each

subproblemis formed from a quadratic approximation to the cost function, and

linear approximations to the constraints. This approximation is chosenbecause

the Kuhn-Tucker first-order necessaryconditions for the approximation are sat-

isfied by the solution of a systemof linear equations. The quadratic program-

ming subproblemproducesa new searchdirection and updated estimates for

the Lagrangemultipliers. A line searchis performedin the direction suggested

by the quadratic subproblem, and new approximations for the objective and

constraints are made at the new designpoint. The processis continued until

convergenceis achieved,at which point the line searchindicates that no move

should be made.

The NPSOL optimizer, which implementsthe sequentialquadratic program-

ming algorithm, hasbeenaddedto the quasi-proceduralpreliminary designsys-

tem. It searchesmore efficiently than the variable metric method used previ-

ously. Convergencehistory for an aircraft synthesistask, with 10variablesand

5 constraints, is shownin Fig. 2.3.

NPSOL took 613 seconds,on a Macintosh IIci computer, to convergeto

the optimum, whereasthe variable metric method required 3856seconds.Both

optimizers werestarted at the samepoint, and both convergedto the sameop-

timum. The two optimizers havedifferent starting points on the chart because

they penalizeconstraint violations in different ways. They reachthe sameopti-

mum becausethere are no violations at the optimum, and henceno penalties.

The sequentialquadratic programming method is used for optimization in the

remainder of this chapter.

17

Figure 2.3: Convergencehistory for different calculus-basedalgorithms.

2.3 Controlling Calculus-Based Optimization

with the Quasi-Procedural Method

The quasi-procedural method is advantageous in optimization, because the pro-

cess involves repeated updates of the same output variables in response to mod-

ification of a subset of inputs. The aim here is to identify possibilities for manip-

ulating the optimization process to exploit the quasi-procedural efficiency. Such

manipulations will involve reductions in the number of inputs being modified at

each step.

Recall that calculus-based optimizers have two distinct phases in each it-

eration: the gradient is computed to choose a direction of search, and then a

line search is performed in that direction. In complex engineering problems, it

is common to estimate gradient components using finite-difference approxima-

tions. Each variable is perturbed in turn, to isolate its influence on the objective

and constraints. On the other hand, the line search usually requires all design

variables to be modified at once. Thus, the quasi-procedural method has greater

18

impact on the gradient calculationsthan on the line search. For most problems,

this is the dominant computational expense.

Consider the wing design problem investigated by Takai, which was described

in Section 2.1 and illustrated in Fig. 2.2. In the line search, the design variable

Taper is modified at every function evaluation and so subroutines AICS, DF_,-

COMP, and FORCES are always called. In this phase of optimization, the

quasi-procedural method does not avoid subroutine calls. However, many calls

are avoided during the gradient estimation phase, because only one component

of the Jacobian (the gradient with respect to Taper) requires the invocation of

AICS and DECOMP.

The percentage of calculation time that is saved by the quasi-procedural

method depends on the details of the optimization algorithm being used. Takai

found a 73% improvement when using the variable metric algorithm, with central-

difference estimation of the gradient. Using NPSOL [31], with forward-difference

gradients, the quasi-procedural system achieved a saving of about 60%. The dif-

ference is due to a reduction in the expense of the gradient estimation, because

forward-differencing is faster than central-differencing, while the cost of line-

search is unchanged.

This shift in relative expense hints at an indirect influence that the quasi-

procedural method exerts on the line-search. When gradient estimation is ex-

pensive, it is common to use an accurate line-search, so that fewer gradient

estimations are performed. With the less expensive gradient estimation, it can

be beneficial to reduce the accuracy of the line-search. The results presented in

the next section indicate the effect of line-search accuracy on optimizer perfor-

mance.

2.3.1 Efficient Gradient Approximation

The large benefit of the quasi-procedural method for finite-differencing motivates

a closer look at how this operation is performed. The standard finite-differencing

method requires two variables to be modified for the calculation of each column

of the Jacobian. The new variable must be perturbed, and the variable that was

19

previously perturbed must be restoredto its original value. This restoration to

the unperturbed valueensuresthat the changein objective value is due entirely

to the modification of a singlevariable.

• Jl • • T-"4_ • J2

AXl L

Ax 2

dJ J2 Jo

dx 2 Ax 2

dJ J2 J1

_2 Ax2

Error=

dxldx 2

Figure 2.4: Standard and lazy finite-difference schemes for gradient estimation.

An alternative "lazy" method avoids the restoration of previously perturbed

variables to their original value as illustrated in Fig. 2.4. The search direction

calculated using this gradient estimation is not the same as the one given by

the previous method, because the gradient d!ffers by a second order term. The

new method has produced successful convergence for all problems on which it

has been tested, but it sometimes requires a different number of line searches to

reach the optimum. The line-search accuracy should again be matched to the

gradient estimation technique being used.

Figure 2.5 indicates the computations required for gradient estimation, for

different finite-differencing schemes. A grid is constructed, with each column

associated with a design variable, and each row associated with an analysis

subroutine. The shading of each box in the grid indicates whether the analysis

routine of that row needs to be executed when estimating the gradient for that

column.

A standard procedural executive requires all analyses to be run whenever

any design variable is modified. Hence, all boxes in the grid for Fig. 2.5(a),

which shows the necessary computations for procedural execution, are shaded.

2O

When the quasi-proceduralexecutiveis used,subroutinesAICS and DECOMP

arenot run whenthe gradientwith respectto Incidence is estimated. However,

these subroutines are executed when the gradient with respect to a is computed,

because the perturbed value of Taper is returned to its original value. Hence,

Fig. 2.5(b) includes lightly shaded boxes to indicate that the need to run these

subroutines is associated with restoration of a previously perturbed variable to

its original value. Figure 2.5(c) shows that this work is avoided by the lazy finite-

differencing scheme. Figure 2.5(d) demonstrates that it can alternatively be

avoided by re-arranging the columns of the Jacobian. This re-ordering approach

is described further in the next section.

The change in gradient estimation usually produces only a small increase

in the savings provided by the quasi-procedural method, and this is true for

the wing design problem. However, the effect is problem-dependent. If the

incidence variables were excluded from the example, the original formulation

would not be affected by the quasi-procedural method. The savings due to the

new gradient estimation technique would then be a much higher percentage of

the total computation. For the aircraft optimization problem considered by

Takai, gradient estimation time was reduced by 10% relative to the standard

estimation technique.

2.3.2 Ordering Design Variables

The lazy gradient estimation technique does not restore variables to their unper-

turbed values because it is costly to do so. The lazy finite-differencing scheme

would not be attractive if there were no cost associated with the restoration.

Consequently, it is useful to arrange the design variables to minimize the cost

of restoration. This means that the previously perturbed variable should only

invalidate a subset of the routines invalidated by the next variable. This inval-

idation information is available in the quasi-procedural method, so it is simple

to sort the variables such that the set of invalidations caused by modification of

the value for variable j - 1 is a subset of the invalidations caused by changing

variable j. The result for the wing design example is shown in Fig. 2.5(d). The

21

Subroutines

AICS

DECOMP

F-ORCES

Subroutines

AICS

DECOMP

F,ORC-_

Vnbl_

Variables

(a) Standard procedural execution,

standard finite-differencing

(b) Quasi-procedural execution,
standard finite-differencing

Sub_rouUnes

_cs

D_O_

_RCES

Variables

(c) Quasi-procedural execution,
"lazy" finite-differencing

Figure 2.5:

Subroutines

AICS

DECOMP

FORCES

(d) Quasi-procedural execution,
standard finite-differencing,
variables re-ordered

Key

i [] Subroutine i iavldidated by Vm-id>lej

1

i [] Subroutine i invalidated by Vmablej-I

J

i [] Subroutine i not invalidated

1

Quasi-procedural savings in gradient estimation for wing design task.

22

!i I i

Line-

Searches

Lazy Finite-

Difference

Ordering of

Variables

Computer
Time

% Saving

No Quasi- 15 18.97 -
Procedural

Quasi- 15 8.62 55
Procedural

17 8.39 56

15 8.02 58

Table 2.1: Optimization efficiency with accurate line-search.

Line-

Searches

Quasi-

Procedural

No Quasi- 18
Procedural

18

Lazy Finite-
Difference

Ordering of
Variables

19

18

Computer
Time

21.12

8.14

7.63

7.43

% Saving

61

64

65

Table 2.2: Optimization efficiency with inaccurate line-search.

Taper variable is shifted to be modified last, because the invalidations due to

modification of a are a subset of the invalidations caused by Taper.

Computational savings achieved during gradient estimation are similar to

those observed for the lazy finite-difference scheme. As shown in Table 2.1 and

Table 2.2, overall optimizer performance for the wing design problem is greatest

when this technique is employed, because the number of line-searches required

to reach the optimum is not affected by the order in which the variables are

arranged. The results also indicate that the accuracy of the line search should

be reduced as the cost of each gradient estimation is reduced.

Figure 2.6 shows the computation required to estimate gradients for an air-

craft design example. There are ten columns in the grid, each corresponding to

a design variable. As in Fig. 2.5, the shading of each square indicates whether

23

a particular subroutine must be executed to estimate gradients with respect

to a given design variable. The worst ordering of design variables, shown in

Fig. 2.6(a), produces the maximum number of invalidations caused by restora-

tion of a previously perturbed variable to its original value. The best ordering,

shown in Fig. 2.6(b), minimizes these invalidations. This example illustrates that

the variables cannot always be arranged in a sequence that produces a strictly

increasing number of invalidations for each design variable, but the number of

unnecessary computations can be reduced significantly. Here, the number of sub-

routines executed due to restoration of previously perturbed variables is reduced

from 38 to 6. There is a 10% difference in computation time for the worst-order

case and the best-order case, which is the same as the saving associated with

the lazy finite-difference scheme for this problem.

Variable ordering is important for optimization techniques that do not use

gradient information. When using a response surface technique, the sample

points should be evaluated in a sequence that minimises the number of vari-

ables modified between consecutive points. In a genetic algorithm, ordering the

population so that individuals with similar characteristics are evaluated consec-

utively can reduce the time required for that evaluation. Ordering is less useful

in this case, because it has to be repeated at each generation, as the population

changes. The cost of ordering must be balanced against the cost of evaluating

each individual, but when evaluation is expensive, optimizer efficiency improves.

This issue is considered further in Chapter 7.

2.3.3 Removal of Iteration Loops in Analysis Subrou-

tines

Many engineering analyses contain feedback loops, in which estimates of a

certain parameter are successively refined through iteration until the value is

converged to within a specified _olerance. A gradient-based optimizer requires

smooth functions, so the tolerance must be small compared with the finite differ-

ence step size. This can require many iterations, particularly when convergence

24

111i|!

Subroutiae_

ENGINE

CRVKTS

TAILGM

CDRAG

DCMDCL

CLWMAX

COIvlPCO

PDRAO

DRAG

WEIGHT

TOH.25

CLIMB2

RANGE

COST

(a) Worst Ordering of Variables

Vmiables

Subroutines

ENGINE

CRVKTS

TAILGM

CDRAG

DChfl)CL

CLWMAX

COMPCG

PDRAG

DRAG

WEIGHT

LFL25

TOFL25

CLIMB2

RANGE

COST

(b) Best Ordering of Variables

Key

i [] Subroutine/invalidated by Variablej

J

i [] Suh'omiae i invalidated by Variablej-I

]

i [] Subroutine i not invalidated

J

Variables

Figure 2.6: Quasi-procedural savings in gradient estimation for aircraft synthesis

task.

25

is weak. The iteration may be replaced by an equality constraint, which must

be satisfied at an optimum design point [32].

Such constraints have been implemented in the TASOP preliminary design

code [12], and provided dramatic improvement in both reliability and speed of

optimization, but the observed benefits for a wing optimization were problem-

dependent [36]. The influence of the different program structures depends on the

cost of the extra design variable compared with the savings of avoided iterations.

The only iteration loop in the analysis used in the simple aircraft configuration

problem is on zero fuel weight. It is strongly convergent, so only a few cheap

iterations are required. Optimization with the extra variable and equality con-

straint is not significantly faster than optimization with the iteration loop (their

relative performance varies depending on the point in design space from which

the optimization is started). However, each iteration on zero-fuel-weight re-

quired substantial computation in the more complex problem described in the

next section. The analysis that replaces the iteration with a design variable and

constraint takes half the time of the original analysis to reach the optimum.

I

]win[oO,tw,]()

Figure 2.7: Replacement of iteration loop with design variable and constraint.

While the net benefit of loop removal depends on the sensitivity of the com-

puted result to the estimated initial value, the role of the quasi-procedural

method is clear. It minimises the work associated with the introduction of

26

!_| !| i

an extra design variable, and thus maximises any computational savings that

might accrue.

2.4 Application of the Baseline System To a

Complex Problem

The effectiveness of the quasi-procedural method was demonstrated in some

simple applications by Takai [16, 17, 18]. A wing design problem (20 panel in-

cidence variables, 1 angle of attack, 1 taper ratio) produced a 73% reduction

in computation time. A complete aircraft synthesis (10 design variables, 5 con-

straints) required 22% less computation time than the conventional method.

Preliminary studies for aircraft design may, however, involve much more com-

plex analyses, and much larger sets of data, than these sample problems. The

full-mission optimization of a transport aircraft is considered here, to check that

the quasi-procedural method continues to perform well when optimization runs

take minutes on a supercomputer rather than minutes on a personal computer,

and the central database has thousands rather than hundreds of entries.

To handle problems of this magnitude, several small changes have been made

to the quasi-procedural system. The executive routines are now written in

machine-independent Fortran, which has allowed them to be run on the Cray

Y-MP and several workstations. Additional routines have been introduced to

control the transfer of vector and array variables between the analyses and the

database. The method for assembling a computational path has been modified

to improve the extensibility of systems involving many analysis routines. Previ-

ously, data files associated with each analysis routine were required for building

the path, but now the user need only supply a single project file. It is now pos-

sible to provide more than one analysis to compute the same output variable,

and the appropriate method for a given situation can be selected by the user.

This last modification allows the optimizer to use approximate analyses along

with detailed analyses, which has been shown to be advantageous in situations

where the detailed analysis is computationally expensive or non-smooth [28].

27

2.4.1 A Sample Problem

The problem chosen for consideration is the full-mission optimization of a trans-

port aircraft, using the method developed by Gallman and Kroo [30]. Aerody-

namic loads are calculated using a vortex-lattice model. Induced drag is found

by integration in the Trefftz-plane. The aircraft model includes fuselage, wing

(two spanwise elements, so inboard twist may differ from outboard twist), en-

gines and pylons, vertical tail and horizontal tail. It also captures the effects

on load distribution of fiap and elevator deflection. Wing and tail structural

weights are computed using beam theory applied to a structural box that is

sized to resist the maximum applied loads from five different flight conditions.

An iteration loop is used in this sizing, because the loads and the weights de-

pend on each other. At each iteration, the lift coefficient is calculated using an

assumed weight, and the aircraft is trimmed to ensure that the load distribution

is realistic. Iteration continues until the calculated Weight matches the assumed

weight. The twelve design variables, nine constraints and the objective function

for the chosen problem are shown in Fig. 2.8. Previous optimization using these

analyses has required about 200 seconds CPU on a Cray Y-MP.

2.4.2 Modification of Analyses for Quasi-Procedural Ex-

ecution

While the central motivation for this work is to check the performance of the

quasi-procedural system, it is also important to deal with the modification of

existing procedural analyses. Difficulties in this area would have ramifications

for the usefulness of the system in terms of extensibility, because new analyses

must be able to interact with existing routines. Although integration of sim-

ple analyses with the quasi-procedural executive is trivial, experience with this

larger code, which has 8000 executable lines and uses 20000 variables, suggests

that the modification process should be automated as a precompilation step.

The key issues encountered during modification are discussed below.

28

!!i 11

Deflection

Wing Location

Wing Area

Tail Area

lahlmtl.v.t Thrust
Direct Operating Cost

Co_raht_

Pitching
Moment for

Take-off

Rotation

Take-off Field

Length

Cruise Trim
Cruise Thrust

Static Range

Stability

Climb

Gradient

Landing

Field

l_n_tb

Figure 2.8: Optimization of mid-sized transport aircraft.

29

It is important to note that the difficulties with the original code are re-

stricted to the passing of variables between routines. Hence, the first job is sim-

ply to identify all the inputs and outputs of each subroutine. The second task is

to replace the commands that send them to (or get them from) other routines

with commands that send them to (or get them from) the central database.

Programming tools can be developed to identify the inputs and outputs of

analysis routines. All variables appearing in common blocks and calling state-

ments may be communicated between subroutines. Inputs are distinguished

from outputs by the way they are used in the current routine. The highlighted

variables in Fig. 2.9 provide examples of the three classes of variables that must

be distinguished.

SUBROUTINE StatM

Real Data(1000), Cref, CL, CM

Common Data, Cref, CL, CM

XCGaft =Data(521)

Alpha = 1.0

EIvDfL = 0.0

Winc = 0.0

CALL AEROAIDha. ElvDfL.Winc _[CGaft_

CLf = CL

CMf = CM

SM = - (CMs-CMf)_ref/(CLs-CLf)

Data(555) = SM

RETURN

END

Key: Input to this routine.

output to routine cBlled

bw this routine.

Output to routine which

called thIB routine.

Figure 2.9: Identification of inputs and outputs.

It is often necessary to introduce new variable names for inputs or outputs,

because a single name was used for several variables in the original code. This

difficulty arose in the joined-wing code because a common block used in aerody-

namics routines contained variable names that also appeared in a common block

3O

i!7 _li:

used in structural routines, but the names referred to different variables. The

problem also occurred because angle-of-attack was both an input and an output

for the subroutine used to trim the aircraft, and because elevator deflection was

output by several routines. This requirement for unique names may seem to

complicate the modification process, but they can easily be automatically gen-

erated. In the example of code modification presented in Fig. 2.9 and Fig. 2.10,

the variable CL, originally in a common block, is changed to CL-AEROo in

the database. The suffix indicates that it is an output of the AERO routine,

and thereby distinguishes it from CL calculated in any other routine. The new

names make it easier to trace each variable in the source code, which enhances

the extensibility and understandability of the system.

The code that transfers information between routines is replaced by calls to

quasi-procedural executive routines, with a different routine being used for each

of the three different classes of variables being communicated. For inputs, a call

to subroutine GET is inserted prior to the line in which the variable is first used.

For outputs that are used by a routine being called by the current routine, a

call to subroutine PUSH replaces the regular call. All other outputs are sent to

the database by introducing a PUT command at the end of the current routine.

(The distinction between PUSH and PUT is that PUSH temporarily assigns

a value in the database, while PUT makes a permanent assignment.) These

modifications are illustrated in Fig. 2.10. All communications to and from the

analysis routine appear explicitly as calls to these executive routines, aiding the

programmer in understanding the flow of information.

A project file that lists all database entries can be written while the inputs

and outputs are being identified. Whenever a new variable is found, it should be

added to the file. If it is output to be used by a routine that called the current

routine, the current routine should be listed as the analysis routine. In Fig. 2.11,

each variable carries the default value of 9999., because the source code being

modified does not provide the actual value.

Hence, an automated precompilation procedure should generate source code

and an input file that axe suitable for use with the quasi-procedural executive

31

SUBROUTINE StatM

call GET(XCGaft ,'XaftCG')

Alpha = 1.0

EIvDfL = 0.0

Winc= 0.0

call PUSH(alpha . 'aloha' |

call PUSHfelvdfl. 'elvdfl' }

call PUSH(wine L 'wlnc-delf' }

call PUSH(xcuaft, 'C_DOsltion }

call GET(CLf, 'CL-AEROo')

call GRT(CMf, 'CM-AEROo')

call GET(Cref ,'Cref')

SM = -(CMs-CMf)*Cref/(CLs-CLf)

call P_T(gM ,'$taticMargin')

RETURN

END

Figure 2.10: Insertion of calls to communicate with the central database.

_XaftCG 9999

_alpha 9999

_elvdfl 9999

_winc-delf 9999

_cgposition 9999

_CL-AEROo 9999

ANALYSIS: AERO

_CM-AEROo 9999.

ANALYSIS: AERO

_Cref 9999.

_StaticMargin 9999.

ANALYSIS: STATM

Figure 2.11: Generation of project file.

32

!I !l ¸

routines. It shouldbe noted that automatically generatedcodewill not always

fully exploit the quasi-proceduralmethod,becauseit is sometimesbeneficial to

break existing routines into smaller units. Sometimeslogical tests have been

included in the original codeto avoidsomeunnecessarycalls. Thesewill not be

removedautomatically, and canexpand the databaseunnecessarily.

2.4.3 Performance of the Baseline System

The performance of the quasi-procedural method has been assessed by direct

comparison with the system used by Gallman and Kroo for the optimization

of transport aircraft. The computations performed in each subroutine were

not modified, to ensure that any differences in performance would be entirely

attributable to the quasi-procedural control of subroutine execution. In some

cases, however, large subroutines were split into smaller routines. This allowed

the system to avoid calculation of outputs that were not specifically requested.

Both systems used NPSOL for optimization, with the same settings of optional

parameters and the same scaling of variables. Tests were performed on an IBM

RS6000 workstation, and on a Cray Y-MP supercomputer.

The impact of variable order and finite-difference scheme on optimizer per-

formance is similar to that quoted for the simple aircraft optimization discussed

earlier. The results presented in this section for the new system are for the best

ordering of design variables, and for the standard finite-differencing scheme,

because best performance is achieved with these choices.

The baseline system successfully handled this optimization task, reaching

the same optimum point as the standard analysis system. This solution was

consistently produced for optimization runs from several different initial design

points. These results confirm the effectiveness of the new executive routines,

and they verify the accuracy of the modified analysis routines.

Optimization with the quasi-procedural system reduced the time spent on

the analysis routines. The reduction in analysis subroutine calls for this op-

timization problem is important, because care had been taken in the original

routines to prevent unnecessary computation. For example, design variables

33

that affect the expensiveAICS subroutine were identified in an input file, so

that it would not be called during the calculation of all gradient components.

The quasi-proceduralsystemhandledthis automatically, but alsoidentified un-

necessarycalls to inexpensiveroutines that were repeated thousandsof times.

The impact of these routines on total computation time is more difficult to

handle by handcrafting, but it is alsomuch moresignificant.

2OO

150

._ 100
[...

5O

0

ii

l _tl_ard Total timeTotal time
QPM, no ZFW loop Total time

598 sec
688 sec
355 sec

Aero Beam Interp Forces GetQPM GetV

Subroutines

Figure 2.12: Relative computation times for complete optimization.

The overhead associated with the quasi-procedural control of the analyses

increased the total time of optimization, so that it required slightly more compu-

tation than the standard system. Examination of the most expensive executive

routines reveals the aspects of the method that axe expensive.

GetQPM is the subroutine that generates and checks the computational path

for the system. Almost all of the time spent in this routine is used in the first pass

through the analyses, when the path is built. Figure 2.13 shows that GetQPM is

less costly in later iterations. As the number of iterations is increased, GetQPM

takes a smaller fraction of the total time. The expense of path generation is

34

not really part of the optimization, because it could be built and saved prior

to beginning the optimization run. When the same analyses are used for many

optimization problems, it is possible to re-use the dependency information, in

a manner similar to the re-use of Hessian information when warm-starting an

optimizer. Consequently, it is reasonable to account for the bulk of the time

spent in GetQPM as development time, because the programmer is relieved of

the burden of explicitly coding the subroutine calls.

Much of the overhead time is devoted to writing vectors to and from the

database, as local variables are kept separate from global variables. This cost

is less significant on the multi-processor Cray Y-MP than on the workstation,

but programmers should be aware that it is expensive to transfer vectors to

subroutines that are called often. In the example, the AERO routine is called

60,000 times during an optimization, and it uses GETV 28 times at each call,

which accounts for 70% of the cost of getting vectors from the database. Alter-

ation of the structure of this single routine, to limit the number of vectors being

transferred, leads to a substantial reduction in the cost of optimization.

The remaining overhead is chiefly devoted to identifying which database

variables are to be associated with local variables, and to tracking the validity

of database variables as inputs are modified. Both of these tasks are strongly

affected by the structure of the analyses, because loops require modification

of inputs at every iteration. A method for replacing an iteration on zero-fuel-

weight with an extra design variable and a constraint was described earlier, and

it was noted that the total optimization time was reduced by 48%. Analysis ar-

chitecture has a dramatic influence on the overhead cost of the quasi-procedural

method, with the simpler structure reducing path generation time by 75%. This

suggests that further effort should be devoted to developing more general meth-

ods for handling non-linear program architectures.

35

25

2O

_d 15

_ 10

5

0

Aero Beam

StandardQPM

Interp Forces

Subroutines

GetQPM GetV

Figure 2.13: Relative computation times for one iteration.

2.5 Summary

This chapter has described the development and validation of a baseline design

system that combines a quasi-procedural executive with a sequential quadratic

programming optimizer. Standard Fortran subroutines have been modified so

that they can be controlled by this system, and a technique for automating

the conversion process has been outlined. The system has performed success-

fully on a computer-intensive optimization task. Its flexibility and extensibility

become more apparent as the complexity of the analysis increases. The suit-

ability of this architecture for controlling aerospace optimization systems has

been confirmed. It is now being used for preliminary design studies at the Boe-

ing Aircraft Company [37], where an automated software conversion tool is also

being developed [38].

Investigation of the role of the quasi-procedural method in calculus-based

optimization reveals that the influence of the system is greatest when a small

36

_i illi

number of inputs are modified at each pass through the computation. Conse-

quently, it is significant when gradients are estimated using finite-differences,

but it is less important during the line-search. An investigation of the impact

of the method when automatic differentiation [39, 40] is used to compute gra-

dients is in progress, but preliminary results indicate that it provides significant

benefits [41].

The best formulation of the optimization task is affected by the interaction

between the executive and the optimizer. The quasi-procedural method has been

shown to reduce the cost associated with extra design variables and constraints

that are introduced to replace iteration loops. Coupling variables and constraints

can be used, in similar fashion, to split a large problem into components that

execute in parallel. (When an output parameter from one routine is an input

to a second routine, the input variable can be made a design variable so the

routines can execute independently. The dependence is captured by a constraint

requiring the output of the first routine to match the design variable input to the

second routine at the completion of optimization). Work on this decomposition

method, and on parallel optimization with the quasi-procedural architecture, is

being conducted by other members of the aircraft design group at Stanford [42].

37

i:_I

Chapter 3

A Simple Genetic Algorithm for

Aerospace Design

The range of problems that can be considered in the baseline system is limited

by the calculus-based optimizer's need for gradient information, which is not

available in many aerospace design tasks. A more general automated search

capability can be attained through integration of optimization algorithms which

do not use gradients. One such method, a genetic algorithm, is studied in this

chapter.

Figure 3.1, taken from Ref. [43], displays several complex and highly-refined

flying creatures that have evolved naturally. These biological designs are com-

pared with man-made flying machines with similar features, to illustrate that

human designers have often been inspired by biological precedent. Useful analo-

gies are not limited to the designs themselves, but can extend to the process by

which they were developed. Genetic algorithms belong to a class of optimization

methods known as evolution strategies, which use operators similar to those of

natural evolution to guide their search for improved performance. The basic

search mechanism of genetic optimizers is described in this chapter.

Genetic optimization occupies a gap in the range of available techniques,

lying between gradient-based methods and random search [22]. It can be used

in multi-modal domains, or when the search space is discontinuous or noisy.

38

_16 290 226 1M 134 M 1.S

Milmm o4ytem ago

Figure 3.1: .The natural evolution of flying devices inspires the development of

a genetic algorithm.

39

i_ 1!

Successfulapplicationsof geneticalgorithms havebeenreported in many disci-

plines, including pattern recognition [44], layout [45], scheduling [46], and par-

titioning [47]. Theseachievementssuggestthat the geneticalgorithm provides

a robust, generalpurposesearchcapability, but their useis not universally ap-

propriate. The optimizer must be able to exploit somestructure in the search

spaceto guide the generationof improved designs. Expert knowledgecan be

usedto shapea domainsothat it possessesthis necessarystructure. Optimizer

parameterscan be selectedso that the geneticalgorithm candetect it.

In this chapter, several features that can limit optimizer performance are

discussed.Applications in spacecrafttrajectory designdemonstratethat imple-

mentation details strongly influence optimizer behavior. They also show that

the geneticalgorithm providesnew searchefficiencyin this designdomain.

3.1 The Genetic Search Mechanism

All optimizers search for improvement of an objective function. Calculus-based

methods use gradient information as their guide, as described in Section 2.2, but

evolution strategies mimic the natural evolutionary process. Genetic algorithms

form one class of evolution scheme, and are distinguished by the basic set of

genetic operators they use to seek improvement. A number of evolutionary

schemes are described here, and the essential features of genetic algorithms are

identified.

Natural selection is sometimes simplistically described as "survival of the

fittest", but it is more accurate to say "survival of the genetic code of the

fittest". Similarly, in a genetic optimizer it is an encoding of the relatively fit

candidate that survives. A parametric description of the design is developed, and

the optimizer is used to identify appropriate values for the parameters. Each

individual is represented by a genetic string, which is a concatenation of the

values of the design variables. The entire string is analogous to a chromosome,

with genes for the different features (or variables).

4O

The simplest searchprocessis purely random. A single starting point is

chosen, and a sequence of undirected mutations, or modifications, is made. The

performance of each design is recorded, but information about previously evalu-

ated designs is not used to guide the development of new designs. Convergence

to an optimum is only guaranteed if the design space is exhaustively evaluated.

The earliest artificial evolution scheme was developed by Rechenberg in

1964 [48]. It adds selection to the purely random search. When a single design

is randomly mutated, or modified, to generate a new design, the two designs

are compared. The design with higher performance is selected, and used as the

starting point for further modification. This sequence of random modification

and selection is repeated for many iterations. Improvement is achieved whenever

the mutation produces a design with superior performance, but the new design

is rejected when its performance is inferior. Although progress is not guaranteed

at every step, it can be accumulated after many iterations.

This scheme out-performs random search when it is better to make ran-

dom modifications from one point rather than another. This is true when the

search domain is regular, because higher performance is expected in the neigh-

borhood of the design with superior fitness. A maximum mutation step should

be specified, so that the mutation operation can only reach points in the neigh-

borhood of the current design. The requirement for regularity restricts the range

of applications for which this search is appropriate, but it is not unreasonable

for an evolutionary algorithm. Dawkins [49] stresses that complex biological

designs are the result of accumulating a large number of small changes, with

improvement in performance at each change. (It is worth noting, in passing,

that simulated annealing algorithms [50] are similar to this mutation-selection

search scheme, except in the details of selection, and in the criterion used to size

the maximum mutation step.)

The simple mutation-selection evolutionary algorithm performs a series of

local searches, which are similar to, but less efficient than, the iterated line

searches of gradient-based optimization methods. In multi-modal doamins, these

searches can terminate at a locally optimal point. Parallel searches from several

41

points aremore likely to identify the global optimum. Consequently,a popula-

tion of candidate designswhich areconsideredsimultaneouslyhasmore robust

performancethan a searchfrom a singlepoint.

When a population of candidatedesignsis available,the optimizer doesnot

needto conduct a number of independentlocal searches.Different population

memberscanshareinformation to improvesearchefficiency.Evolutionary search

from a singlepoint must be asexual,and is limited to a mutation operation.

Geneticsearchfrom apopulation of pointspermits sexualreproduction, meaning

that offspringcanbe formedby recombiningelementsfrom two parents. This is

done in a crossoveroperation, which takesdifferent piecesof the geneticstring

from different parents,and recombinesthem to form viable offspring.

A crossoveroperator is muchmorepowerful than a random mutation opera-

tion when the searchdomainhasa structure that providescorrelations between

parts of the genetic string (genotype)and the performanceof the individual

it represents(phenotype). Substrings,or building blocks, which appear in the

descriptionof above-averagephenotypesare likely to survive into the next gener-

ation, evenif the genotypeis brokenup by the action of crossoverand mutation.

Short, low-orderbuilding blocksareretainedand combinedto form higher-order

building blocks,with the processrepeatingovermany generationsuntil the best

designis found.

Figure 3.2 illustrates the essentialfeaturesof a genetic algorithm. A pop-

ulation of candidatedesignsis generated.Each designis describedby a set of

variables,which areencodedin a geneticstring. The performanceof eachmem-

ber is evaluatedby computing valuesfor the objective and constraint functions.

Designswith high performanceare selectedto participate in reproduction. The

crossoveroperator recombineselementsof the geneticencodingof eachparent,

to produce a new encoding for a new design that inherits features from each

parent. The mutation operatormay alsomodify elementsof the new individual,

so that new featuresnot presentin either parent canbe introduced. Thus, the

basicoperatorsof selection,crossoverand mutation permit both exploitation of

42

the best featuresin the current population, and exploration for features that are

not currently represented.

Population

Selection Encoding

Evaluation
Crossover

001 I001:00

Figure 3.2: A standard genetic algorithm, illustrating the roles of selection,

reproduction and crossover.

The crossover operator distinguishes genetic algorithms within the range

of evolution schemes. This operator increases search efficiency, but requires

a search domain which contains building blocks that can be recognized and

exploited through recombination. Although formal gradients are not required,

some trend information should be available. These limitations of genetic search

are discussed further in the next section.

3.2 Limitations of Genetic Algorithms

The genetic algorithm is unlikely to bc successful in domains where low-order

building blocks do not combine to form superior higher-order blocks. This may

occur when the different variables are decoupled, so that the optimal value of

43

each variable is independent of the values of other variables. Davidor [51] dis-

cusses the importance of epistasis (coupling of design variables) on the perfor-

mance of genetic algorithms. More significantly, above-average low-order build-

ing blocks may combine to form below-average higher-order blocks [22]. When

this occurs, the domain is called deceptive, because the attractive building blocks

are misleading.

Difficulties can arise even in domains that are not deceptive, if the bet-

ter building blocks are not recognised, or they are not retained. Liepins and

Vose [52] note that genetic algorithms may fail if the chosen embedding (repre-

sentation of the variables in the genetic string) is bad, if sampling error gives un-

reliable estimates of the relative utility of building blocks, or if crossover breaks

up building blocks of high utility. These potential problems are described below.

Encodings that allow description of infeasible solutions increase the work for

a genetic algorithm, because they increase the size of the total search space,

and reduce the proportion of useful building blocks in the population. Use of

a precedence matrix in a sequencing task allows the description of candidate

orderings that are logically inconsistent (eg A precedes B, B precedes C, C pre-

cedes A) [53]. With only 8 items to be placed in sequence, 99.98% of all possible

strings describe impossible orderings, and a randomly-generated initial popula-

tion is unlikely to contain any feasible candidates. Permutation encodings used

in conjunction with re-ordering operators are much more successful in problems

of this type [42].

The population is a small sample of all possible designs in the domain. An

ideal sample includes all the important features of the domain, but if some help-

ful building blocks are not present the representation is not accurate, and the

sample has some error. Population size has a strong effect on sampling error,

with the error reduced in large populations where building blocks are more likely

to be represented. Goldberg has presented theoretical results for optimal popu-

lation size for serial genetic algorithms which suggest that total computation can

44

vary anywherefrom logarithmically to exponentially with problemsize,depend-

ing on the choiceof population size[54]. As the sizeof the problem increases,the

population shouldalsoincrease,but the required sizewill bedomain-dependent.

Crossoveris likely to disrupt useful building blockswhen the componentsof

thoseblocks lie far apart in the string, because the probability of the crossover

point falling between the components is high. Expert knowledge of the domain

can help to prevent crossover disruption. In aircraft design, a good encoding

would place wing sweep and thickness-to-chord ratio close together in the genetic

string. They are very tightly coupled, So they will form a useful building block

which is unlikely to be broken up by crossover if they are consecutive entries in

the string.

In function optimization by genetic methods, the standard method for ban-

dling constraints is the application of penalty functions to the objective [22]. It

is desirable to use graded penalties that reflect the extent of constraint violation,

rather than applying a harsh penalty in an attempt to avoid the infeasible region

entirely [55, 56], but it is difficult to grade these penalties when evaluation of the

performance is impossible. If a fixed penalty is applied, the genetic optimizer

can converge prematurely, to a point that is simply feasible rather than optimaJ.

When many members of the population are unable to be analyzed, and conse-

quently share a very poor rating, it is difficult to correlate the building blocks

with performance, and sampling error is increased. An alternative approach for

handling constraint violations is to perform some sort of repair to correct the

infeasibility [57], and to evaluate the performance of the repaired design.

3.3 A Simple Genetic Algorithm

The genetic algorithm used in this research is based on Goldberg's SGA (Simple

Genetic Algorithm), which is listed in Ref. [22]. The operators are slightly

modified to handle real-valued or binary encodings. Roulette-wheel selection is

replaced by tournament selection, and advanced operators for species formation

and mating restriction are introduced. The software developed for this thesis is

45

i_! !!i

described in Appendix B. The generalfeaturesof the algorithm are described

here.

An exampleof a string to be used in genetic optimization of a wing is pre-

sented in Fig. 3.3, along with the candidate design that it represents. Each

feature (dihedral angle) is given a binary representation in the example, but

integer or real representations are also possible [58]. The form of the encoding

distinguishes genetic algorithms from genetic programming, where the string

contains the parse tree of a program [59].

Variables: Dihedral of each element

-di_-d2_ 3

dihedl = 12.0 degrees

Genetic string: dibedl : dihed2 : dihed3

8 bit coding: i0000100:01111100 : i0010101

!

Integer Range: t
136

0 -> 255

Real Range: -180 + (136/255) * 360
-180 -> 180

Decoded value: 12.0

Figure 3.3: Decoding a genetic string.

Selection is the essential element of an evolutionary scheme. Some perfor-

mance metric must be chosen to rate the relative fitness of different population

members. This fitness measure is used to select high performance individuals

to participate in reproduction. The idea of fitness is natural in optimization:

any algorithm compares the performance of different candidates, and chooses

higher performance. The standard statement of an optimization task requires

46

minimization of an objective function, whereas the genetic algorithm favors max-

imum fitness. Hence, an appropriate fitness function will be inversely related to

the regular objective.
1

l+J_

where f denotes fitness and J represents the objective value. For J > 0, this

guarantees fitness values in the range [0,1].

Selection of individuals to participate in reproduction is performed using a

tournament scheme. Each time a parent is needed, k members of the current

population are selected at random, where k is the tournament size. Their fitness

is compared, and the highest fitness individual becomes the parent. With this

scheme, it is expected that the best individual will be a parent k times per gener-

ation (it will participate in k tournaments and win them all), with linear decline

in expectation of reproduction to the worst individual, which cannot win a tour-

nament. A tournament size of two (k -- 2) is used in this research. This method

is introduced to replace roulette-wheel selection, which is susceptible to prema-

ture convergence when a poorly scaled fitness domain allows one individual to

dominate reproduction. Ranking schemes prevent such dominance, because they

are not affected by the margin of superiority of higher-fitness individuals. Tour-

nament schemes perform a local ranking at each selection operation, without

ever requiring the entire population to be sorted.

Raw selection only produces clones of the current best in the population.

Improvement requires modification of their genetic code. The genetic algorithm

needs reproduction operators, such as crossover and mutation, that alter the

selected encodings to create offspring of higher fitness.

In crossover, two individuals swap part of the string, so two new individuals

are formed as combinations of parts of the old strings. An example of the effect

of crossover is shown in Fig. 3.4. A crossover point is randomly chosen along the

string, and is the same for both parents. When one parent has above-average

building blocks in one part of the string, and the other has good building blocks

in another part of the string, the offspring receives useful building blocks in both

sections, and should have fitness superior to either parent. The operation shown

47

is a single-point crossover, meaning that each parent string is broken at only one

point. It is used in preference to multi-point crossover, which has been found

to be effective in some applications [60], but can be excessively disruptive when

building blocks are large.

Parent I Parent 2

Crossover Point

1
10010100 : 10000110:10110110

28.9 i 9.2 : 76.9

s

t ! %%

Crossover Point

1
OtlO0110 : 01011011 : OlllO011

-36.0 • -51.5 : -17.6

10010100:10011011:01110011

28.9 : 38.0 : -17.6

Offspring 1

01100110:01000110:10110110

-36.0 : -73.1 : 76.9

V V
Offspring 2

Figure 3.4: Crossover.

If a real-valued encoding is used, crossover occurs at a variable rather than

between two binary bits. The variables in the genetic string are copied from

one parent before the crossover point, and the other parent after the crossover

point. The value of the crossover variable is mutated:

Valoff : VaIp1 + Rand x (Valps - VaIp_)

Here, Off denotes offspring, while P1 and PP refer to Parents 1 and 2 respec-

tively. Rand is a random number in the range [-1,1]. This mimics the effect of

the operator for the binary string, where one variable generally changes value

(because the crossover point lies withing the substring representing that vari-

able).

48

Crossovercan disrupt existing building blocks in the quest for new combi-

nations of features. The crossoverprobability should be chosento balancethe

number of new designsintroducedeachgenerationagainst the possibility of los-

ing high-fitness individuals from previous generations. Although Grefenstette

recommendscrossoverprobabilities of 0.6- 0.8 [61],the accuracyof the tourna-

ment selectionschemereducesthe likelihood of losinghigh-performancedesigns,

and a crossoverrate of 0.9 is usedin the applicationsdescribedlater.

A mutation operation allowsmodification of elementsof the new individual,

so that new features that were not presentin either parent canbe introduced.

Pointwise mutation is a very simple operator that allows individual bits of the

string to be changed.This producescorrespondingchangesto a designvariable,

as shownin Fig. 3.5. Mutation rate is generallyquite low, sothat random new

featuresareintroduced in only a fewmembersof the population. If a mutation is

advantageous,it can be exploited in subsequentgenerationsthrough the action

of selectionand crossover.

Mutation

Point

I0010100 :I0000110:I0110110
28.9 : 9.8 : 77.3

Before Mutation

Mutation

Point

I0010100:i0000110:I0010110

28.9 : 9.8 : 32.3
After Mutation

Figure 3.5: Mutation.

A basic genetic algorithm is unable to maintain sub-populations at several

local minima without the introduction of some mechanism to induce diversity.

A sharing function, added to a standard genetic algorithm, can help to identify

several local minima by allowing the formation of several 'species'. Information

49

71 1I!

about severalnear-optimalalternatives is usefulat the preliminary designstage.

A final choicebetweenthem can be made after more detailed analysis, or by

consideringfactors not modelled in the optimization task.

Goldbergand Richardsonhavereviewedseveralproposedschemes[62],and

concludethat a sharingfunction iseffective. This sharingfunction hasbeenused

successfullyby KrishnaKumar et al to identify multiple near-optimal solutions

for a structural control problem [23]. The function simply penalisespopulation

membersthat areclosetogether in the searchspace,by degradingfitnessaccord-

ing to the distance between them. The distance between ith and jth population

members is

d_j = _ _ (xk,, -- xk,3]2
k=l \ xk,ma¢ Xk,rnin f

where x is the vector of design variables, and k denotes each element of the

vector (from 1 to n, where n is the number of design variables). The sharing

function is

{ Kx(1-_) ifd<aS(d,D=
0 otherwise

The sharing strength, K, is a parameter provided by the user. The maximum

sharing distance, a, depends on the dimension of the search space and the num-

ber of assumed minima, q, which is another user-selected parameter.

The adjusted fitness is then given by

F,- N

ES(d,)
5=1

Note that the denominator is always > 1, because S(d,,) = 1, so fitness can only

be degraded by sharing.

When several sub-populations are clustering around different local optima,

crossover of two parents from different clusters is unlikely to produce offspring of

higher performance, because they are likely to be far from either local optimum.

5O

Deb and Goldberg haveinvestigated severalschemesfor restricting mating be-

tween sub-populations, or species[63]. They report that it can be helpful to

allow mating only betweenparents with separation < a.

Genetic algorithms do not have convergence criteria analogous to the Karush-

Kuhn-Tucker conditions exploited by gradient-based methods, so the number of

function evaluations required to find a solution depends on the user-selected

termination criteria. For the results in this chapter, a specified number of gen-

erations is used as the only termination criterion. For each optimization task,

the algorithm is run several times to check that results are consistent, because

performance can vary due to the probabilistic nature of the genetic operators.

3.4 Application to Spacecraft Trajectory De-

sign

Although genetic algorithms can be applied to a wide variety of problems, sat-

isfactory performance often requires very careful implementation. Selection of

constraint handling technique can be critical, because the choice exerts a strong

influence on the topology of the design space. The importance of these issues

is demonstrated in the applications that are described in the remainder of this

chapter.

3.4.1 Background

The investigation of interplanetary trajectories is a typical design problem. A

large number of potential solutions are initially considered, with relatively simple

analysis techniques. A few of the most promising alternatives are then chosen

as starting points for more detailed design. Effective preliminary studies must

identify the best aJternatives rapidly and accurately.

Initial analysis of potential interplanetary trajectories is often performed us-

ing patched-conic techniques, in which the spacecraft is assumed to be solely

influenced by the gravitational attraction of the Sun during its heliocentric

51

!_| _|

transfer. Interplanetary transfer legs are specifiedby (1) the departure date

and body, and (2) the arrival date and body. Complete trajectories are de-

scribed by a sequenceof interplanetary legs. In the preliminary designphase,a

variety of missiontypes may be investigated (composedof different interplane-

tary legs)and a rangeof departureand arrival datesmust be assessedfor each

leg.

The interplanetary trajectory designspaceis typically characterizedby nu-

merousminima separatedby infeasibleregions. Consequentlyoptimization by

standard methodsis difficult. Somepatched-conicanalysisprogramsinclude a

gradient-basedoptimization method [64, 65, 66], but only the local minimum

closestto the starting point is discoveredby thesemethods. Programsthat do

include a gradient-basedoptimizer typically havea grid searchoption and sug-

gest its useduring initial missionstudies. In the grid search,the program steps

through the departure and arrival date rangesfor eachleg of the mission, and

every potential trajectory is simulated [64, 6"[]. The grid must be fine enough

to detect local minima. Hence, for missions with many planetary encounters or

large ranges of dates, the number of function evaluations grows very quickly.

For this application, a standard genetic algorithm has been added to the

IPREP (Interplanetary PREProcessor) program, which is part of the IPOST

(Interplanetary Program to Optimize Simulated Trajectories) package [64]. This

allows the genetic algorithm performance to be compared directly with the grid

search method already available in IPREP. The sharing function and mating

restriction scheme described in the previous section are available as optional

extensions to the basic algorithm, so that their effect on optimizer performance

can also be evaluated.

The IPREP grid search option allows the user to specify a range of starting

dates for a mission, and a range of duration times for each interplanetary leg.

The genetic algorithm uses those dates and times as design variables, with the

same minimum and maximum values. The genetic string is simply a concatena-

tion of these floating point variables. Although schemata theory suggests that

52

binary strings aremoreefficient, floating point codingsoften work well in prac-

tice [68]. They are preferred here because the encoding is more natural than a

binary representation.

3.4.2 One-Way Direct Earth to Mars

The first problem used to verify the effectiveness of the genel_ic algorithm is a

one-way direct mission from Earth to Mars (Fig. 3.6). A 6000 kilogram payload

must be delivered to a 1 Sol parking orbit (period of 24.6 hours) about Mars.

The objective is to minimize the initial mass in low-Earth orbit.

Mars

Obiective:

Minimize spacecraft initial mass

Design variables:

Earth departure date

Mars arrival date

Figure 3.6: Earth to Mars mission.

Earth departure date and Mars arrival date are the only two variables, so

the complete design space can be represented graphically (Fig. 3.7). There are

eight local optima (located at the bottom of the valleys). Four of them have

objective values within 5% of the global optimum (17700 lb). Infeasible points

are assigned a nominal large initial mass (100000 lb), so infeasible regions appear

as a plateau in the mesh plot.

53

Initial
mass

Transfer
time

Earth departure date

(a) Surface mesh of initial mass in LEO

2.$OO

i 20O0

1500

0:
200 300 400 500 600

Tru_erTime, days

(b) Contours of initial mass in LEO. Levels are 20000, 30000, 60000, 100000 lb.

Figure 3.7: Design space for Earth to Mars mission.

54

SearchMethod Function Evaluations

Genetic Algorithm 3000

Coarse grid

followed by 13564

local fine grid (1-day step)

Fine grid (1-day step) 1346400

Table 3. I: Function evaluations for different search methods.

The genetic algorithm readily solves this problem to within a day of the

exact optimum, in fewer than 3000 function evaluations (30 generations, each

with population size of 100). Further refinement of the solution is inappropriate

for these mission feasibility studies, as it exceeds the accuracy of patched-conic

theory. The efficiency of the genetic algorithm compares favorably with grid

search, as shown in 3.1. The step size for the grid search has to be chosen

carefully, because too large a step may jump over the true optimum. Usually a

coarse grid is used to locate promising regions, and subsequently a fine grid is

used in those regions. For this problem the initial grid has a 5-day step size for

launch date and a 20-day step size for duration of the interplanetary leg. The

local grid has a step size of 1 day, to match the accuracy attained by the genetic

algorithm.

For the genetic algorithm, the distribution of the population in the design

space evolves over the generations, as indicated in Figs. 3.8, 3.9, 3.10, 3.11. The

location of each population member is marked by a cross on the contour plot

of the design space. The members of the first generation are randomly chosen

by the optimizer. The original population is largely infeasible, but there are

members in each of the feasible regions. Most of the population in Generation

10 is feasible. By Generation 20 the population is clustering around the two

best local optima. At Generation 30 the entire population is clustered around

the global optimum.

When most of the design space is infeasible, and all infeasible points are

assigned the same fixed value of the objective function, it is difficult to correlate

parts of the genetic string with performance. Most strings produce identical

55

!:_!I!

2500

200O

_. 1500

1000

, , , $
¥ *' ÷

÷ ÷÷ ÷ +

÷ ÷+

+ ÷ ÷ ÷ ÷

÷ ÷ ÷ ÷ ÷ + ÷

÷ 4t _ ÷

÷ ÷+ +

0 2o0 3® _ 5_ 6_

Transfer Time, days

Figure 3.8: Population distribution, Generation 1

t

0 200 300 400 500

Transfer Time, days

6OO

Figure 3.9: Population distribution, Generation l0

56

1500 *

÷

1000
÷

500 • ** ÷

0 2O0 300 400 500 6_0

Transfer Time, days

Figure 3.10: Population distribution, Generation 20

25O0

i 1000

o 2o0 3oo _o 5_o do

Transfer Time, days

Figure 3.11: Population distribution, Generation 30.

57

!_!ili

objective values,so selectionpressureis very low. Searchis worsethan random

until feasiblepoints are found, becauseinfeasiblepoints are chosenfor repro-

duction instead of new random points being tried.

The effectof large infeasibleregionscanbe demonstratedin this domainby

modifying the objective function, sothat any trajectory with initial masslarger

than 20000 lb is considered infeasible. This shifts the infeasible plateau, shown

in the surface mesh plots, from 100000 lb (Fig. 3.7) to 20000 lb (Fig. 3.12). The

new design space is 95% infeasible.

Initial

irla$_

Earth departure date

Transfer

time

Figure 3.12: Surface mesh of initial mass in LEO, 95% infeasible.

Figure 3.13 indicates that this new space is indeed more difficult for the

genetic algorithm. After 30 generations, by which time the previous example

had fully converged, most of the population is still infeasible. A few members

have located a local minimum. Members from this small feasible region quickly

dominate the reproductive process, and by Generation 50 (Fig. 3.14) the entire

population has shifted to this minimum. The other feasible regions were never

located, and a global minimum in one of those regions would be missed.

This example confirms that large flat areas in the design space should be

avoided. The infeasible region should be graded so that points that are nearly

feasible are more likely to reproduce than points that are far from feasible. This

is not always possible, but one example is provided later in this chapter, where a

quadratic penalty is applied to violations of the constraint on total trip duration.

The extent of infeasibility is of no interest in grid search, because information

58

25OO

200o

1500

5o0

+

÷

+÷

+•, ÷

• ÷ •
4

•÷
+

+ +

4" • •
÷

÷

÷
÷ •

• ÷ ÷ 4_

÷•÷

÷

÷

÷ 4" ÷

• ÷

200 300

÷ ÷

÷

• ÷

o _o 6;o

Transfer Time, days

Figure 3.13: Population distribution, Generation 30, 95% infeasible.

2500

e_ 2000

t

_. 15oo

1000

O

2;o 3;o _o 5;0 d_

Transfer Time, days

Figure 3.14: Population distribution, Generation 50, 95% infeasible.

59

from current points doesnot guidethe selectionof future points. This distinction

shouldbenoted whendevelopinga problemdescription,andthe solution method

should influencethe designof the searchspacetopology. Geneticalgorithmscan

handle large regionsof constantobjective value, but when they occupy more

than 90%of the designspace,grid searchmay be competitive.

The history of population distribution presentedin Fig. 3.8 to Fig. 3.11

showedthat the population in a basic genetic algorithm ultimately clusters

around a single optimum point. It would be preferable to preserve informa-

tion about severallocal minima, so that the missonplanner can select one of

them for reasonsnot included in the statementof the optimization problem. A

sharing function that canpreservesubpopulationsat severallocal minima was

describedearlier in this chapter. This function is added to the basic genetic

algorithm, and its influence on optimizer behavior is now investigated. The

number of expectedminima, q, is set to be 5. This is not the actual number

of minima present in this space. The resulting performance is representative of

behavior in a design space of unknown topology.

When a sharing function is applied without a mating restriction, any popu-

lation member can mate with any other. The effect on convergence is shown in

Fig. 3.15. At Generation 30, when the standard algorithm had fully converged,

there are population members retained at each local minimum, but there are

still many infeasible designs.

Offspring can take some features from a parent in one feasible region, and

different features from a parent in another feasible region, and end up with a

combination that is infeasible. The poor performance of these offspring makes

them unlikely to reproduce, but they are replaced each generation by new off-

spring produced in a similar manner. Without a mating restriction, there will

always be a significant number of infeasible designs in the population.

The introduction of a mating restriction successfully resolves this difficulty

with the sharing function. A restriction suggested by Deb and Goldberg [63]

limits crossover between separate feasible regions. Figure 3.16 indicates that the

population is well distributed in each feasible region. The value for expected

6O

2500 • ÷ ÷

1500 +
• ÷ ÷

10O0 +-

÷
÷

o 2_ 3® _o 5_ do

Transfer Time, days

Figure 3.15: Sharing without mating restriction. Generation 30. K = 1.0

2000:

1000 +

o, 2o0 30o _ 5_o do

Tram'fer Time, days

Figure 3.16: Sharing with mating restriction. Generation 30. K = 1.0

61

numberof minima was not critical to the success of the sharing function, because

the algorithm is not forced to find exactly that number of minima.

The influence of the sharing strength parameter, K, can be observed by com-

paring Fig. 3.16 with Fig. 3.17. Lower sharing strength allows tighter clusters

to form. Thus, Fig. 3.17 shows sub-populations around the four minima that

are within 5% of the global minimum, and a few members near three other local

minima. In general, it is useful to reduce the sharing strength as population size

increases. Choosing K = 0 eliminates the effect of the sharing function.

20°0 _ '

_- 1500

I000

5OO

0 I

200 30O 4OO 5OO

Transfer Time, days

Figure 3.17: Sharing with mating restriction. Generation 30. K = 0.025

The introduction of a sharing function and a mating restriction allows the

genetic algorithm to retain more information about the design space. This

is achieved without significant increase in the function evaluations required to

reach the optimum. Consequently these features are retained in the genetic al-

gorithm, and are used in the more difficult optimization tasks that are described

next.

62

3.4.3 Roundtrip Earth to Mars, with Optional Venus

Swingby

The performance and behavior of genetic algorithms has been established for a

two-variable problem. Now several potential opposition-class roundtrip manned

missions to Mars are investigated. They include direct and Venus-swingby (in-

bound, outbound and double) interplanetary transfers. The number of design

variables varies from 3 to 5, depending on the munber of Venus-swingby legs in

the mission. These tasks allow comparison of genetic algorithm and grid search

performance for a range of problem sizes.

Total trip time is limited to 2 years with a 60-day stay at Mars. Earth de-

parture in the 2010-2025 time span is considered because this design space has

been previously investigated using grid search techniques [69, 70, 71, 72]. For

this study, missions employing nuclear thermal propulsion (Isp = 925 sec) are

evaluated. All missions begin and return to a 500 km circular, 28.5 degree incli-

nation, Earth orbit. Upon Mars arrival, the interplanetary spacecraft inserts into

a 1 Sol parking orbit with a periapsis of 500 km. Earth-return is accomplished

with minimal propulsion using a reentry capsule. All vehicle mass estimates

used in this analysis are chosen to be consistent with References [73, 74, 75, 76].

The summary of results presented in Table 3.2 clearly indicates that the ge-

netic algorithm is more efficient than grid search for all problem sizes considered.

This superiority is more marked for the larger problems. The population size

must be sufficiently large to accurately sample the search space. As the total

search space increases, population size is also increased.

The difference in performance for the outbound swingby and inbound swingby

cases, both 4-variable problems, is due to the different topology of the search

spaces. The importance of representation of infeasible regions, which was dis-

cussed earlier in this chapter, is demonstrated by the relative performance of

two strategies used in the solution of the double swingby case. This representa-

tion issue is particularly important for the double swingby case because it has

the largest infeasible space. The total duration of the return mission to Mars

is limited to two years. Satisfaction of the constraint on total duration of the

63

Mission
Type

Design
Variables

GA
Function

Evals
(N × Gens)

Grid
Function

Evals

Direct 3 4000 8000
200 x 20

Inbound 4 12000 64000
swingby 300 × 40

Outbound 4 18000 64000

swingby 300 x 60

5

5

Double

swingby,

fixed

penalty

120000

1500 x 80

50000

500 x 100

Double

swingby,

quadratic

penalty

512000

512000

Table 3.2: Function evaluations for different problem sizes.

return mission to Mars becomes more difficult as the total number of legs is

increased. For the double swingby mission, with the chosen ranges of allowable

duration for each leg, only 25% of the missions that can be described have a

total duration of less than two years. Many of these missions are infeasible for

other reasons, so just 2% of the entire space is feasible.

The standard method for representing infeasible points in IPREP is to as-

sign a fixed performance value. This produces an infeasible region with a flat

topology, that gives no information about the proximity of infeasible points to

feasible regions. A simple alteration to this representation allows the true per-

formance of the mission to be calculated, and the constraint violation is handled

by adding a quadratic penalty that grows as the extent of infeasibilty increases.

J = J_.co_ + PenWt x (t - t,_x) 2

Here, J is the objective value, J,,,_co_ is the unconstrained objective value,

PenWt is a user-specified weighting factor, t is the trip duration, and t._o_ is the

64

maximum allowabletrip time. The useof this method for penalizing excessive

trip duration doesnot reducethe number of infeasiblepoints, but it reflects the

extent of infeasibility. The smoothersearchspacecan be accurately modelled

with a much smaller population, and total work for the genetic algorithm is

reducedby almost 60%.

3.4.4 Simultaneous Investigation of Different Mission

Types

The various optimization tasks considered in the previous sections are really all

sub-tasks in a larger optimization problem. The ultimate goal is to find the

best way to get to Mars and return safely. According to standard practice,

the best example of each mission type is found independently, and then these

examples are compared to find the best mission. The genetic algorithm offers

the opportunity to solve the entire problem in a single optimization run.

A description of the full problem must provide enough degrees of freedom

to characterize a mission that includes all possible legs. Each leg is identified

by the planetary encounter at its end point. Thus the general candidate for

the Mars return problem allows legs for launch, outbound Venus swingby, Mars

arrival, inbound Venus swingby, and Earth arrival. (Mars departure is not a

variable, because it is fixed at 60 days after arrival.) Extra variables are added

to this set, to indicate whether optional legs should be included in a particular

candidate. These variables switch between 'Include' and 'Not include' values.

When these variables have the 'Not include' value, the variable describing the

duration of that leg is ignored. For the Mars mission, only the Venus swingby

legs are optional. Hence, there are two switching variables, taking the total

number of variables to 7.

It has been suggested that these extra variables might be avoided by simply

adding a zero value to the set of allowable duration values for an interplanetary

leg. However, the set of allowable values should be continuous between the

lower and upper bounds. If a leg exists, the lower bound is always much larger

than zero, because an interplanetary leg will never have a duration of only a

65

_J]i

Start of Optimal GA Grid Search
Launch Mission FUnction Function

Window Type Evaluations Evaluations

April 26 Outbound 140000 648000

2015 Swingby 2000 × 70

Sept 28 Double 160000 648000

2019 Swingby 2000 × 80

Table 3.3: Locating global optima of different type.

few days. Moving the lower bound to zero would cause description of many

more infeasible designs. This has been shown to cause difficulty for the genetic

algorithm. Hence, it is better to retain the lower bound, and introduce the

separate variable.

The switching variables used here are not binary, because missions includ-

ing and excluding optional legs should not be equally represented. Candidate

mission types with more legs occupy a larger fraction of the total search space

than missions with fewer legs. The randomly generated initial population should

provide an accurate sample of the entire space, so most of its members should

include optional legs. In these studies, the switching variables are weighted to

give a 95% chance that each optional leg will be included in members of the

initial population.

The duration of a good Mars arrival leg that originated on Earth is generally

not appropriate for a leg that originated at a Venus swingby. Crossover between

missions with different numbers of Venus swingby legs is therefore unlikely to

produce offspring of improved performance. Consequently, the inclusion of the

sharing function and mating restriction is very helpful in this domain.

Table 3.3 shows the results of running the complete optimization problem for

two different launch opportunities, each of 100 days. These opportunities were

chosen because the optimum missions were known to be different types [72, 73].

Identification of different mission types indicates that the success is not due to

the method favoring a single type. In each case, the genetic algorithm located

the global optimum more efficiently than a sequence of separate grid searches,

66

with lessintervention required of the user. The benefits in both efficiencyand

convenienceare expectedto be evenmoremarked for larger problems.

3.5 Summary

Successful applications of a genetic algorithm to several optimization tasks, rang-

ing in size from 2-variable to 7-variable problems, have been reported in this

chapter. Genetic optimization is both more efficient and more convenient than

the grid search technique commonly used for interplanetary trajectory design,

particularly with the introduction of sharing and mating functions that allow

simultaneous identification of several distinct local optima. These results con-

firm that genetic algorithms can play an important role in preliminary design,

but they should be used judiciously.

The performance of the genetic algorithm is influenced by the topology of the

search space. Consequently, the user should ensure that the objective function

distinguishes the fitness of different designs wherever possible. The introduc-

tion of graded penalties that reflect the extent of infeasibility, rather than a

fixed fitness value for any constraint violation, helps significantly in this regard.

Modification of the size of the search space, through disqualification of strings

that cannot be analyzed or through repair of infeasible candidates, can also

increase efficiency of the genetic algorithm.

Special switching variables, which refer to the existence or absence of possi-

ble components of a candidate design, can be included in the genetic encoding.

This allows simultaneous assessment of designs of varying complexity, because

different population members can have different numbers of components. In the

interplanetary trajectory application, automatic selection of mission type pro-

duces a significant reduction in the interface work required during optimization.

The abilitY to explore a space that includes designs of varying complexity is

explored further in the next chapter.

67

!_!l i

Chapter 4

A Variable-Complexity Genetic

Algorithm

The search mechanism used by genetic algorithms relies on the identification

of high-performance building blocks in candidate designs, which are then re-

combined so that promising features from different designs are collected in new

candidates. Despite the suggestion of growth, the morphology of candidate de-

signs remains static throughout the conventional optimization process. However,

the building block description can be extended to allow the nature of candidates

to change during optimization. In this chapter, a new genetic algorithm that

provides this capability is introduced. Application to a simple block-stacking

task demonstrates the fundamental advantage of the new algorithm.

4.1 Motivation for Variable-Complexity Opti-

mization

The scope of the search capability provided by standard optimization algorithms

is limited by the need for a fixed parameterization of the problem - one that must

be specified a priori. The concept must be fully developed by the designer, and

68

the algorithm simply finds the best valuesfor the chosenvariables. When sev-

eral alternative configurationsarebeing considered,eachcandidatemust be de-

scribed and optimized independently. Furthermore, re-optimization is required

wheneverthe designerchangesthe description of a particular concept.

A more flexible algorithm would automatically alter the parameterization

during optimization. Successfulfeaturescanbe identified in simpledesigns,and

subsequentlyrefined asthe algorithm increasesthe complexity of the parame-

terization. This progressionis familiar to aeronauticaldesigners,who generally

selectapproximate valuesfor global featuressuchaswing areaand span,before

concentrating on more specific aspectssuchas the airfoil sections at different

stations along the wing. The ability to modify the parameterizationcan extend

the role of optimization beyondautomatedanalysisof prescribedconfigurations

to automated designof new concepts.
Natural evolution doesnot limit improvement by operating on the values

of a fixed number of parameters. Dawkins [49] defines a complex object as

one which 'could not have come into existence in a single act of chance'. He

acknowledges that it might be developed by an intentional designer (as aircraft

are), but stresses that complexity can also result from cumulative selection (as

it does in biological systems). Figure 4.1 suggests that the analogy with natural

evolution should be extended to include the evolution of complexity.

The standard genetic algorithm possesses a limited capability for assessment

of different concepts, because the encoding can include variables that describe

the existence or absence of optional features. One such scheme, used to simulta-

neously examine different interplanetary trajectory concepts, was described in

the previous chapter. Several researchers have used simil_ schemes for genetic

solution of structural optimization tasks [78, 79, 80, 81, 82]. These encodings

grow very rapidly as the number of possible elements is increased. The popula-

tion size required to avoid a deceptive sample of the design space can become

prohibitively large. The members of the initial, randomly-generated population

will, on average, include half of all possible elements. When the best design uses

only a small fraction of all possible elements, the genetic algorithm is forced to

69

i_! ill

Figure 4.1: Natural evolution, like aerospacevehicledesign,proceedsfrom sim-
ple descriptionsto complexspecialization.

7O

considerdesignsof unnecessarycomplexity, which reducesthe efficiency of the

search.

The existenceor absenceof possibleelementscan bedescribedimplicitly, by

using a geneticstring that carriesinformation only about elementsthat actually

appear in the design. Elementsin the string exist, elementsnot in the string

are absent. This encodingrequiresa variable-lengthgenetic string, becausethe

length of the string reflects the complexity of the design. Although variable-

length encodingsare unusual in geneticsearch,several investigatorshave been

attracted by their expressivepower. They have been usedfor developmentof

rule sets[83],for automatic generationof computer programs[59], and for func-

tion optimization [86,87]. Important prior implementations of variable-length

strings, and the current scheme,are briefly discussedin the next section. Mod-

ifications to the standard geneticoperators are introduced, and then a simple

application demonstratesthe powerof the variable-complexityalgorithm.

4.2 Variable-Length Encodings

4.2.1 Prior Use

Smith developed a learning system, LS-1, that uses genetic operators to evolve

high-performance rule sets of varying size [83]. Each individual in the popu-

lation is a set of rules, and the recombination of rules from different parents

generates new rule sets of superior performance. This representation contrasts

with the classifier system developed by Holland et al., where individuals are

isolated rules, and the entire population constitutes the rule set. The classifier

system relies on competition between population members during performance

evaluation to generate useful groups of rules, whereas LS-1 uses genetic search to

identify both individual rules and groups of rules. (De Jong notes that Smith's

formulation outperforms classifier systems when extensive exploration is permis-

sible and radical changes are acceptable [85]. This observation indicates that

the variable-length representation is appropriate for conceptual design, while

fixed complexity classifier systems might be more appropriate for the detailed

71

designphase.) The sizeof the best groupof rules is not known a priori, so rule

sets of varying size are permitted. For LS-1, individuals that contain different

numbers of rules must use encodings of different length. To validate the use of

genetic search with variable.length strings, Smith performed a hyperplane anal-

ysis. It shows that promising building blocks are appropriately retained and

recombined, provided that a steady state average length is achieved. This anal-

ysis is an extension of Holland's schema theorem, which provides a theoretical

basis for the genetic search mechanism applied to fixed-length strings [84].

In genetic programming, the individuals in the population are computer pro-

grams. The user specifies a set of terminals (parameters and constants) and a

set of functions (e.g. arithmetic, mathematical, logical, domain-specific), and

random combinations are chosen to compose the programs "(of varying length)

for the initial population. Thereafter, selection and crossover are used to re-

combine features from relatively fit programs to produce offspring of higher

performance. Koza cites the empirical evidence of successful applications in a

variety of fields as proof that genetic adaptation of variable-length strings is a

valid search mechanism [59].

Messy genetic algorithms have been developed by Goldberg et al. [86, 87]

for use in function optimization. Variable-length strings are introduced in an

attempt to avoid deception that can arise when promising building blocks have a

large defining length in the chosen encoding. By removing position-dependence

from the encoding scheme, and allowing each variable to occur anywhere along

the string, the genetic operators are able to discover strings that arrange the

building blocks in a non-deceptive order. The variable-length strings may have

several representations of some parameters, and no representation of other pa-

rameters. A simple conflict resolution scheme is used to choose a single value

for overspecified parameters, and 'competitive templates' are used to provide

values for underspecified variables. This means that the decoding scheme al-

ways provides values for a fixed set of parameters that describe all candidate

solutions, and messy genetic algorithms do not provide the variable complexity

that is sought for the preliminary design system.

72

4.2.2 An Encoding Scheme for Conceptual Design

The present scheme provides the functionality of genetic programming for func-

tion optimization, but the genetic string is a list of parameters, rather than a

composition of functions and terminals. The initial population is constructed by

selecting random combinations of parameters from a user-specified set, and the

solution is a set of parameters rather than a computer program. In contrast to

messy genetic algorithms, there is no template used during decoding to produce

designs of standard form. Candidates of variable complexity are admitted.

There is position dependence in this encoding, but it is relative position

rather than absolute position that is important, Each new parameter influ-

ences the.design that has been constructed from previous parameters, either by

adding elements to the design or modifying existing elements. The decoding

of each parameter therefore depends on the decoding of parameters that occur

earlier in the string. Similar position dependence occurs in the construction of

computer programs, where the operation of each instruction is influenced by

prior instructions.

Variable-length strings make it easier to recognize promising building blocks

in tl_e design problem. The initial population has random values for each vari-

able, so the likelihood of a poor value for at least one variable increases as the

number of variables increases. In problems where a single poor variable radically

affects the performance of the entire design (as is likely in aircraft design, which

is known to be very tightly coupled), random long strings are unlikely to look

attractive. If the genetic algorithm starts with short strings, the population is

more likely to include members that have reasonable values for all variables.

Once these building blocks of short defining length have been identified, the

string can be extended to describe more complex designs. This parallels the

motivation for messy genetic algorithms, where deception is avoided by using

short strings that omit variables that would otherwise extend the defining length

of promising building blocks. The competitive template used with the messy

genetic algorithm is not required here, because strings of any length describe

complete individuals that can be evaluated.

73

4.2.3 An Extended Encoding Scheme for Varying Con-

straint Activity

When individuals of different complexity are allowed in the population, and

there is a trend toward increasing complexity, it is possible for constraints that

are initially inactive for the most promising individuals to become active in later

generations. If variables have been selected without regard to a constraint that

has been inactive, they may have converged to values that are inappropriate

when the constraint is active. Without diversity, the population is unable to

adapt to the changed conditions.

Biological precedent suggests an approach by which adaptation can be en-

couraged [77]. Only a small fraction of the genetic material in biological systems

is used to construct the organism. The locations along the string where decoding

starts and stops are controlled by regulatory genes, which respond to environ-

mental influences when determining whether their piece of the genetic string

should be decoded or not. A switch in activity of even a single regulatory gene

can have profound influence on the final organism.

There are two important aspects of this system to be incorporated in the de-

coding of variable-length genetic strings: unexpressed sections, and a switching

mechanism affected by the environment to control the expression and suppres-

sion of different sections. In the simplest form of this scheme, the genetic string

is extended to carry two values for each design variable. Selection of the copy

to be expressed is controlled by constraint activity. Initially, the first value is

expressed, and selection of promising building blocks proceeds as usual. There

is no selection pressure on the unexpressed values, so they remain randomly

distributed. When expression of the first value causes a constraint to become

active, the value is ignored, and selection operates on the second value. The first

value is retained, because it can be expressed in future generations if it is read

when the constraint is not active. The extended genotype is able to produce dif-

ferent phenotypes in different environmental circumstances. The structure built

74

from early sectionsof the string causesenvironmentalchangesthat affect the ac-

tivity of later sectionsof the string. This influenceof environment on expression

of eachpart of the geneticstring is a specialcaseof position dependence.

4.3 New Genetic Operators

The modified genetic algorithm, which permits the use of variable-length encod-

ings, is illustrated in Fig. 4.2. The basic operators for selection and mutation

that are used in the standard genetic algorithm do not need to be changed for

application to variable-length strings. The selection operator is not directly re-

lated to the string, because it works with the fitness value, which is calculated

after decoding. Tournament selection is used, as described in Chapter 3. The

mutation operator is applied at every location along the string, with a constant

small chance of causing a change at each point. Consequently, the number of

points in the string does not affect the mutation operation, but it does change the

likelihood of a modification occurring somewhere along the string (with longer

strings being more likely to be modified).

The key change is the introduction of a new crossover operator, which is

modelled on the one used in genetic programming [59]. It is similar to single

point crossover, because each parent is broken at only one point. The important

distinction is that the crossover point may be different for each structure, so two

parents of equal length may produce offspring that are longer or shorter. This

allows the individuals to grow and shrink. If a new string produced by unequal

crossover exceeds the maximum allowed length, it is truncated at the maximum

length.

A little care is required to ensure that offspring produced by unequal crossover

are viable, particularly for a binary representation. The crossover point in the

second parent is not completely free. It may occur in any substring, but within

the substring it must match the location of the first crossover point. This re-

striction ensures that offspring contain regular substrings that can be decoded

correctly. Thus, in the example shown in Fig. 4.3, the second crossover point

75

i_I I:i_

Encoding

Fuselage Surface Surface S_face

J_ Crossover

0101-2101"21 01_011"1011

Figure 4.2: A variable-complexity genetic algorithm

can occur in the first, second, or third substring, but it must occur after the

second bit of the substring, so that the substrings in the offspring all have eight

bits.

The sharing and mating restriction operators, which were described in Chap-

ter 3, use a distance measure between pairs of individuals in the population to

determine their mutual influence. With variable-length strings, the distance is

not defined when strings do not contain matching sets of variables. The metric

for determining mutual influence must be modified if a sharing function is to be

used in the new algorithm. Further investigation of these advanced operators

is not included in this thesis. A genetic algorithm with only the fundamen-

tal operators of selection, crossover and mutation is used in conjunction with

variable-length encodings.

76

Parent 1

Crossover Point 1

/

10010100 : 10_ 00110 : 10110110

28.9 : 9.2 : 76.9

Parent 2

S %

i # %%

¢.J %..

Crossover Point 2

/

01100110:01011011:01_ii0011

-36.0 : -51.5 : -17.6

10010100:10110011

28.9 : 72.7

01100110:01011011:01000110:10110110

-36.0 : -51.5 : -81.8 : 76.9

Offspring I

°"
/

V V
Offspring 2

Figure 4.3: Modified crossover operator

77

4.4 Application to a Block-Stacking Task

The new genetic algorithm is first tested in a block-stacking problem. This

example is selected because the candidate designs are constructed from many

similar elements, so it is convenient to vary the complexity of the candidate

designs simply by varying the number of elements. Function evaluations are

inexpensive, so the efficiency of the method can be quickly evaluated.

The aim in this problem is to maximize the horizontal overhang x of a stack

of blocks of height y, as shown in Fig. 4.4. The tower can collapse if the

upper blocks are located too far beyond their supports, and performance is

assessed for the stack that remains after toppling occurs. This objective is

chosen because it makes the problem difficult for gradient-based methods by

making the design space discontinuous. There are sudden jumps in objective

value when incremental movement of blocks causes toppling.

Target

..................

X

Figure 4.4: The block-stacking problem.

The block-stacking problem is difficult for a standard genetic algorithm also,

as Fig. 4.5 illustrates. The stack that achieves significant overhang near the base

is difficult to improve, because any shift toward the target will cause toppling. Its

relatively high performance is deceptive, because it contains low-order building

blocks that will combine to produce higher-order building blocks of low merit.

The modified genetic algorithm is able to counteract this effect, because the

candidate individuals are not required to use all the blocks. Elements of the

78

Target

Base ii_iiiii_'.:ii_.!

(a) Ideal five-block
stack

Target

(b) Deceptive five-block stack.
Bottom three blocks poorly

placed, but performance is good.

Target

Fq

(c) Bottom three blocks ideally

placed, 4th block causes toppling,

hence lower performance.

Figure 4.5: Deception makes poorly placed lower blocks appear to provide a

good foundation for further stacking.

79

i_i Tli

best solution may be developedin different short stacks,which can combineto

form completestackslater in the optimization. The new algorithm did not have

anygreat advantagewhenthe optimal stack wasshort, becausethere was little

scopefor the upper blocksto causedeception.The resultspresentedhereare for

stacksthat havea maximum height of 40blocks,and the variable-length stacks

areclearly superior. Figure 4.6 showsthree histories for both algorithms, each

starting from a different randomly generatedpopulation.

L)

E

40.

10.

it:x-i--___

0. I
0. I0.

Fixed-length encoding
(3 separate optimization runs)

..... Variable-length encoding
(3 separate optimization runs)

I I I I ! -r*'--*=_'-==-_

20. 30. 40. 50. 60. 70. 80. 90. 100.

Generation

Figure 4.6: Fitness of best individual in population.

The algorithm with variable-length strings processes the building blocks of

this problem more efficiently than with fixed length strings. A history of the

growth of the best individual shows a strong trend towards a monotonic in-

crease in size. Improvement occurs when stacks of intermediate fitness crossover

unevenly to generate a longer string.

8O

A large part of the successin this particular problem arisesfrom the capa-

bility of the systemto shift building blocks to different locations in the string.

In the exact solution, the top of the stack alwayslooks the same,becausetop-

pling is only influenced by what lies above a particular block. The crossover
mechanismallows the top of a small stack to end up on top of a larger stack.

Figure 4.6 indicates that the performanceof the variable-length stacksis supe-
rior evenin the initial randompopulation. A random short stack is less likely

to topple than a random long stack, and the performanceof untoppled short

stacksexceedsthe performanceof toppled longerstacks.Figure 4.7 showsthat

rapid progressis possibleoncestacks exceeda height of about fifteen blocks.

The baseblocks for stacksof this height are closeto vertical, with most of the

horizontal distancebeingcoveredin the top fewblocks. Unequal crossoverthat

occurscloseto the basecanincreasethe height of the stack without being likely

to causetoppling.

I I I I

50. 60. 70. 80. 9o.

Generation

100.

Figure 4.7: Growth in height of best individual. (40-block maximum height)

81

This growth mecha_uismindicatesthat this stackingproblem is ideally suited

to solution using a crossoveroperator that shifts the location of building blocks

within the geneticstring. The operator shouldproveuseful in other applications

in which complexity arisesfrom the combination of many similar elements. In

the next chapter, it is applied to the optimization of structural trusses,which are

largeassembliesof simplebars. In Chapter6, the variable-complexityalgorithm

is usedto minimize the dragof a wingthat ismodelledby a setof lifting elements.

82

_1 I!

Chapter 5

Topological Design of Structural

Trusses for Minimum Weight

The variable-complexity genetic algorithm is now applied to the topological

design of structural trusses. Other researchers have previously used standard

genetic algorithms in this domain, so the performance of the new algorithm is

directly compared with their results. A variable-length encoding that includes

expert knowledge of the domain restricts the search space to the feasible re-

gion, so near-optimal truss topologies are efficiently discovered. A hybrid search

scheme, with a calculus-based method to search the smooth subspaces, further

improves the efficiency of optimization.

5.1 Introduction to Structural Optimization

The structural optimization literature identifies three kinds of structural de-

sign problems: sizing, shape and topological optimization [88]. At the simplest

level, a sizing problem varies only the cross-sectional areas of a fixed number of

components. A shape problem may add variables describing the location of com-

ponents, so the proportions of each component in the fixed set may be altered.

A topological problem must also include variables that refer to the existence or

83

absenceof components,sothat candidate structures usedifferent subsetsof the

set of all possiblecomponents.

For sizing and shapeoptimization, gradient-basedtechniquesare often ap-

propriate. It is possibleto treat topological designasa sizing optimization task

by starting with a ground structure that includes all availableelements, and

allowing someof them to vanish [89, 90]. For complex tasks, the computa-

tional burden of sizing large numbersof elementssoon becomesunacceptable.

Furthermore, this formulation generallyproducesa designspacethat includes

many local minima, soconvergenceto the global optimum is problematic. Stan-

dard geneticalgorithms havebeenusedto addressboth of thesedifficulties, but

the variable-compleXityalgorithm canfurther reducethe computational burden

associatedwith unnecessarilycomplexcandidate designs.

Although the variable-complexitymethod canbe applied to optimization of

generalstructures, attention is restricted here to trusses,becausethe analysis

of theseassembliesof pin-jointed bar elementsis relatively straightforward. A

plane truss structure is typically describedby a set of nodesconnectedby pin-

jointed bars that canbe loadedonly in tensionor compression.Somenodesare

prescribed to have zero displacementwhile others are acted upon by specified

external loads. An optimum truss has minimum total weight, while satisfying

stressconstraints on the members,and displacementconstraints on the nodes.

A finite-element method isusedto computethe stressesin the bars, and the

displacementsof the nodes.The method is describedin most modern textbooks

on structural analysis (e.g. [91]). A global stiffnessmatrix is assembledusing

the local stiffnessmatrix of eachelement,and specifiedexternal loadsand node

constraints are included in the relevant vectors. The force displacementrela-

tion is used to solvefor unknown loads and displacements. The weight of the

structure is found by summingthe volume of material of all elements.

84

5.2 Standard Genetic

tural Trusses

Optimization of Struc-

The earliest application of genetic techniques to truss design was performed by

Goldberg and Samtani [92]. They optimized the areas of a ten-member truss,

with stress constraints for each member applied as quadratic exterior penalty

functions. Their solutions on three separate runs, each performing 6400 function

evaluations and starting from a different randomly-generated initial population,

were within 2% of the optimum attained by a gradient method. Although the

genetic algorithm was effective for this sizing task, it was not efficient, and the

gradient method is really more appropriate.

More recently, Sakamoto and Oda [78] introduced a hybrid technique for truss

design, with a genetic algorithm used for layout design and a simple gradient

method used for sizing the cross-sectional areas. They found that the hybrid

method had greater practical reliability than a member elimination strategy,

where they defined practical reliability as the likelihood of finding a design with

performance within 20% of the global optimum. The member elimination strat-

egy often became stuck at local optima that were unnecessarily complex.

The genetic string used by Sakamoto and Oda for topological design is a

concatenation of single bits, each representing the existence or absence of a

possible element. Several other researchers have used similar schemes for genetic

solution of structural optimization tasks [79, 80, 81, 82]. This means that the

string length grows very rapidly as the number of nodes (and hence the number of

possible elements) is increased. The population size required to avoid a deceptive

sample of the design space can become prohibitively large.

Candidate designs generated by a genetic algorithm may be incomplete struc-

tures or mechanisms. Sakamoto and Oda identified these candidates and gave

them fitness equal to the minimum in the population. This makes it difficult to

identify useful building blocks, because it creates large regions with no grada-

tion in fitness [55, 56, 57]. It is preferable to avoid description of mechanisms

by employing an encoding scheme that generates only feasible candidates. Such

85

a schemeis clearly biased,becauseit precludesdescription of many instances

in the featurespace.However,Mitchell [93]claims that biasesthat include fac-

tual knowledgeof the domain (that candidatesshouldnot bemechanisms),and

biasesthat favor simplicity, areuseful aids to the learning process.

5.3 Variable-Complexity Genetic Optimization

of Structural Trusses

The variable-complexity genetic algorithm provides an alternative approach for

topological design. The genetic string need only carry information about mem-

bers that actually appear in the design. They are described as general truss

members with particular endpoints, rather than particular truss members with

known endpoints. This approach is more flexible and efficient than exhaustive

representation of all possible members when a large number of nodes is available.

In the encoding scheme chosen for truss design tasks, candidate solutions

start from a baseline design and the genetic string describes modifications to

be made. The baseline is a non-mechanism (a structure that does not collapse

under the applied load) that uses the minimum possible number of members

to attach all loaded nodes. Where several alternatives use the same number of

members, the description with minimum total length of members is selected.

Each modification to the existing structure is described by a set of three

variables. The first variable identifies an existing member that is to be split

into two members. The endpoints of this member are retained as endpoints of

the two new members, but a new endpoint must also be specified. The second

variable identifies this new endpoint. When an existing member is replaced by

two members in this manner, it is possible that the new structure is a mechanism,

and therefore unable to support the applied load. A mechanism can be avoided

by adding a new member to brace the structure, connecting the new node with

a second node that is already connected to the structure. The third variable

identifies a second node. If this node is not appropriately connected, a repair

scheme shifts it to the nearest attached point.

86

The genetic string that encodesthe seriesof changesto the baselinestruc-
ture is a concatenationof setsof three variables,with eachtriplet describinga

potential modification. Complexity of the structure increasesas the length of

the genetic string is increased,becauseeach triplet splits an existing member

into two, and adds an additional member. The decoding operation is shown

in Fig. 5.1, which showsthe effect of a single triplet on the baseline design.

The number of nodesis fixed (TotaINodes = 9 in this example, represented

by small squares in the figure). The number of elements (Nelem), or truss

members, changes as decoding proceeds. The first variable in the triplet has a

value between 0 and 1, and it is multiplied by Nelem to find which member

should be modified. The second and third variables have values between 1 and

TotaINodes, and they refer directly to particular nodes in the grid.

Figure 5.1(a) shows the baseline structure to support a single load at Node2,

with Node7 and Node9 as constrained supports. Variablel is decoded to show

that Memberl is to be modified. Decoding Variable2, as shown in Fig. 5.1(b),

indicates that the new endpoint for the two members which replace Memberl

is Node6. The member connecting Node9 and Node6 is now Memberl, while

the connection between Node6 and Node2 is Member3. An extra member must

still be introduced to ensure that the structure will not collapse. Figure 5.1(c)

shows that Variable3 is decoded to suggest Node8 as the new endpoint, but

this node is not connected to the structure. The effect of the repair scheme is

illustrated in Fig. 5.1 (b), with the new endpoint shifted to the nearest attached

point (Node7) to form a viable structure. The connection between Node6 and

Node7 is labelled as Member4.

This decoding scheme is an example of a 'shape grammar'. Shape grammars

provide a formal method for generating topologies. A particular grammar is

defined by a set of shapes (straight truss members), labels (each member is

numbered as it is added to the structure), shape rules (the repair scheme avoids

mechanisms) and an initial shape(the simplest shape that supports the specified

load). Reddy and Cagan [94] have used a different shape grammar in conjunction

with a simulated annealing algorithm to develop complex truss topologies.

87

Triplet {Member : Node 1 : Node 2}
{ 0.4 : 6.3 : 8.7 }

ol

8 o _2

9 _"'_ O6 133

a) Member

= intOrarl * Nelem)+l

= int(0.4 * 2) + 1
=1

°,
8 o U 5 3_ 2

9 o 1 Y O3

b) Nodel -- intOrar2)
=6

ol
8a," a 5 -'_2

3/

9o _ [] 3

c) Node2 = int(Var3)

=8

9 _ 3

d) Repair Node2
Shift to nearest
attached node = 7

Figure 5.1: Decoding a triplet of the genetic string.

88

11 l=il

When the topology of the candidate structure has been determined by de-

coding the string, a gradient-based optimizer is used to size the members. Stress

constraints for the members and displacement constraints for the nodes are han-

dled efficiently by a sequential quadratic programming algorithm. In a hybrid

scheme, the cost of each function evaluation for the genetic algorithm depends

directly on the time spent on optimization in the smooth subspace. The work

required for sizing increases linearly with the number of members (quadratically

if finite-differences are used to produce gradient information). The variable-

complexity algorithm typically generates candidates with a small number of

members, so the time spent sizing them is greatly reduced.

This genetic scheme has been applied to a series of truss design tasks. The

first two are used to provide direct comparison with the hybrid method em-

ployed by Sakamoto and Oda. The third allows comparison with an analytically-

determined optimum for a Michel] truss.

5.4 Applications

5.4.1 Nine nodes, one load point.

The first optimization task is to find a minimum weight truss to support an

end load of 1000 Newtons, with a vertical deflection of 0.015 mm at the load

point. A 3 x 3 grid of nodes is provided, with horizontal spacing of 100 mm

and vertical spacing of 50 mm. The number of possible elements is 36 (for n

nodes, the number of possible elements is n[n - 1]/2), and Young's Modulus is

prescribed to be 200 GPa. The density used to calculate truss weight is 0.0079

g/turn 3.

This task is quite simple for the variable-complexity algorithm. Only two

triplets in the genetic string are required to shift from the baseline, which has two

members connecting the load point and fixed nodes, to the optimal configuration,

which has six members. The results of 5 trials, from different random starting

populations, are shown in Fig. 5.2.

89

2000.

1900.

1800.

_: 17oo.

_" 1600.

1500.

1400.
O.

Baseline

1000N

1 \ \...............\

Op_mum

/

5. 10. 15. 20. 25. 30.
Generation

Figure 5.2: Optimization histories for single end load.

A population size of 50 is used, and the genetic algorithm is allowed to run

for 30 generations. The true optimum is found within 500 function evaluations.

In every:trial using the_variableJcompiexity aigorithml some members of the

initial random population have one useful triplet. The optimum is reached as

soon as a mating with unequal crossover is performed between two parents with

different useful triplets, producing offspring that combine the best features of

both parents. _ _ =

Sakamoto and Oda reached a practical optimum in 96% of their trials, but

even the two-member design used as a starting point for the variable- complexity

algorithm satisfies their criterion for practical optimality. They are essentially

reporting a success rate for finding a feasible design, whereas the encoding used

here reduces the search space by guaranteeing feasibility. The average candidate

design in their starting population has 18 members (half the bits in an average

random String of length 36 will be '1'). Consequently, each function evaluation

for their genetic algorithm is more expensive, because there are more members

9O

r_! li

to be sized. The variable-complexityalgorithm provides superior performance

at lowercomputational expense.

5.4.2 Nine nodes, two load points.

In the second example, the 3 x 3 grid of nodes and the material properties of the

members are retained. Two nodes are loaded, as shown in Figure 5.3. Vertical

deflection at the load points is again constrained to a maximum of 0.015 ram.

The baseline truss now needs four members to connect the loaded nodes to the

supports.

2500.

2400.

2300.
°,,,_

_ 2200.
2

2100.

2000.

1900.

_nlum_mmww--wnmmwDmwwlwwwwmtww_

" I

I

Runl Run \Run3
m I

I
|
I
I
I
|
I

I
!

I
I

Run 4

\ Run 5

\
|

0. 5. 10. 15. 20. 25. 30.

Generation

Figure 5.3: Optimization histories for two load points.

As in the first example, only two triplets are required to move from the

baseline to the optimum, but there are more baseline members that can be

modifed. The variable-complexity algorithm requires more function evaluations

to locate the optimum in this problem, but still finds it within 2500 function

evaluations for all trials. The hybrid method of Sakamoto and Oda has more

difficulty in this problem, finding a practical optimum in only 80% of trials.

91

As before, candidate designshave extra members,so the sizing portion of the

hybrid algorithm must do morework than is neededfor the variable-complexity

algorithm.

A history for the best population member for a sequenceof generations

showsthe variety of designsencounteredduring optimization (Fig. 5.4). The

trussesup to Generation20 arebuilt with a singlemodification of the baseline

structure, while the trussesin later generationsarebuilt usingtwo triplets in the

genetic string. The optimum combinesthe modifications of Generation 2 and

Generation 20. Once again the variable-complexity algorithm combines building

blocks from simple parents to produce more complex offspring that have higher

performance.

Ge,',_atioa 1

Gcra"at/oa 2

Generation 20

Generation 25

,t t

Figure 5.4: History of best individual in population.

92

5.4.3 Michell truss.

For a single vertical end-load that produces a force and a couple resisted by

a supporting circle, the optimal truss topology is known. First described by

Michell [95], the members lie along lines of principal strain, forming a series of

spirals that intersect orthogonally, as shown in Fig. 5.5. The optimal members

are curved, while straight bars are used in practice.

The optimal solution can be approached by providing a grid of reasonable

density, so that several straight bars approximate the theoretical spirals. A 7 x

5 grid of nodes is used in this example, as indicated in Fig. 5.6. The base circle

is approximated by prescribing zero displacement for 3 nodes. (The base circle

is represented in Fig. 5.6 for completeness, but it is not directly modelled in the

analysis).

Spoc_od
end load

Built-in

ckcular basc

Curved
s_'uctnra]

members

Figure 5.5: Michell truss for single end load.

The variable-complexity algorithm starts with a baseline structure that has

two members, connecting the upper and lower supports to the loadpoint. Stress

constraints are now imposed on all members, instead of displacement constraints

on the load point, to allow direct comparison with Michell's theoretical solution.

The outer shape of the truss exerts a strong influence on the total weight of

the truss, and a history of the best member in the population shows that trusses

of maximum height are quickly found. Details of the internal structure are not

completely determined when the algorithm is stopped after 150 generations. The

final designs from five different runs are shown in Fig. 5.7. The result from Run

93

i

• C._u_ _-
t s I • iI i

11 • • • I • I

i w

Gcnc_o_ _

w

• • s m

i • , , Ge,_r_o_ 3
i

_, GenecadO°'/6 ,

&_o_ 5 • "

• G_
C_oC_

_@ure 5.6:H_sto_ o_ best _8_v_6u_ in popU_t_ou"

94

5 is a simple, near-optimal truss that uses only ten bars. It is observed during

every run. The first four runs produce designs that include up to four additional

elements, which improve performance by up to 0.5%. No single design produced

by the genetic algorithm includes all the features that appear in different runs.

The designer is able to combine these features to seek superior performance. The

last truss shown in Fig. 5.7 is generated in this fashion, and it yields a further

0.5% performance improvement. It uses eighteen bars, and closely approximates

the shape of the curved optimal truss. Its weight is within 15% of Michell's

solution.

Run 1 W = 1671.7 g

Run 2 W = 1669.9 g

Run 3 W = 1667.3 g

Run 4 W = 1671.7 g

Run 5 W = 1675.3 g

Combination W = 1659.2 g

Figure 5.7: Final designs from different runs.

A problem of this magnitude has not been solved using a standard encoding

with a fixed length genetic algorithm. With 595 bits required to represent all

possible members, a population of several thousand candidates would be needed

to provide an adequate sample of the search space. Average candidates in the

95

first generation would include 297 bars, an order of magnitude more complex

than anything consideredby the variable-complexity algorithm in the entire

optimization procedure. The algorithm describedhere is far better suited to

tasks of genuineengineeringinterest.

5.5 Summary

Genetic algorithms are slow to converge to exact optima. Solutions generated

by the variable-complexity algorithm are often slightly simpler than the true

optimum, but they capture its essential nature. Results of genetic optimization

are most useful when several near-optimal designs are produced. The designer

can combine features from different designs, or may prefer a slightly sub-optimal

design due to considerations not modelled in the problem description. Gradient-

based optimizers can be used in conjunction with a genetic algorithm, to achieve

tighter convergence in smooth subspaces.

The encoding language used by a genetic algorithm can strongly influence its

performance. Biases that reflect factual knowledge of the domain can prevent

description of infeasible designs, and thereby restrict the search space to man-

ageable size. Encodings of variable length, which are available to the variable-

complexity algorithm, allow a bias towards simplicity. This generally reduces

the cost of each function evaluation. The smaller search space and less ex-

pensive function evaluations both significantly improve the efficiency of genetic

optimization, so that previously intractable tasks can be managed by the new

variable-complexity genetic algorithm. Future work will include implementation

of the shape grammar for truss development defined by Reddy and Cagan [94].

96

!!I I!

Chapter 6

Wing Topology Optimization

for Minimum Drag

Several applications of genetic optimization to aerodynamic design of wings are

presented in this chapter. These examples demonstrate that careful constraint-

handling is critically important for location of the optimum. Penalty methods,

repair methods, and analytic satisfaction methods are all used in this domain.

When geometric constraints are imposed on the span and height of a non-planar

wing, fixed-complexity representations converge to suboptimal designs. The geo-

metric constraints are satisfied by folding the structure into the allowable space,

and the details of the folding are strongly dependent on the initial topology.

Successful identification of the optimum by the variable-complexity algorithm

requires an extended encoding of the variables in the genetic string. This encod-

ing allows adaptation in response to changes in constraint activity, as explained

in Chapter 4. Although calculus-based methods do not produce optimal topolo-

gies when used alone, they can be helpful for final refinement of designs produced

by the genetic optimizer.

97

6.1 Motivation for

tion

Use of Genetic Optimiza-

Systems for preliminary synthesis studies have traditionally used algebraic rela-

tionships and heuristic rules to size aircraft components [3, 5, 6, 7]. With steady

increases in the computational power available to designers, it has been possi-

ble to introduce panel methods for more accurate aerodynamic estimates at the

preliminary design stage [4, 28, 96, 97]. It has been observed that the drag pre-

dicted by these methods is strongly influenced by panel geometry. If continuous

variation of the width of each panel is permitted, the aerodynamic response can

be noisy, and estimation of gradients for calculus-based optimization becomes

difficult.

Gallman [4] smooths the drag prediction by constraining all panels to have

the same width. This is effective, but it limits the choice of variables, because

parameters such as fuselage width and wing span are no longer independent.

Unger and Hall [99] have attempted to smooth the gradient estimation by us-

ing automatic differentiation, but found that convergence difficulties were not

completely resolved. Giunta et al [98] have introduced response surface approxi-

mations for the same purpose, but note that the number of function evaluations

required to provide data for curve-fitting can be prohibitive for large problems.

No such efforts to eradicate noise from the aerodynamic analysis are required

when genetic optimization is employed, because gradient information is not re-

quired.

In recent years there has been significant interest in highly nonplanar geome-

tries for very large aircraft. When the total arc-length of the wing is greater than

the maximum allowable span, the wing must be folded to satisfy the geometric

constraints. If the arc-length is fixed throughout optimization, the folding is

generally not optimal. If the arc-length can be increased during optimization,

folding occurs only when the wing encounters a constraint, and is therefore more

likely to be appropriate. The variable-complexity genetic algorithm provides the

flexibility to alter the arc-length in this manner.

98

1t i|i

6.2 Aerodynamic Analysis of Lifting Surfaces

A vortex-lattice code [100] is used to calculate the loads on the wing, with drag

being computed by integration in the Trefftz plane. In this code, the wing is

represented by a number of panels, with a bound vortex located at the quarter-

chord of each panel. The system solves for the vortex strengths that produce zero

normal flow at control points, located at the three-quarter-chord. The panels are

grouped into elements, with all panels in an element sharing the same incidence

and dihedral. Figure 6.1 shows a wing of eight rectangular elements, with the

control point of each panel shown at the three-quarter chord point, and the

bound vortices lying along the quarter-chord line.

Figure 6.1: Panel representation of lifting surface.

The aerodynamic model solves the linear system of equations:

[AICS]{r}=Uo¢{O}

The aerodynamic influence coefficients [AICS] are computed using the Biot-

Savart law, and represent the strength of the downwash at control point i due

to the existence of a unit strength vortex at panel j.

All the design tasks that are explored in this chapter require the calculation

of both lift and drag, but no consideration is given to wing weight. The objective

is always to minimize drag while generating specified lift. Later examples also

99

have geometric constraints on span and height of the non-planar wing. The

design variables all relate to the geometry of the lifting surfaces. Dihedral is

usedin all problems. Incidenceis alsoa Variable,unlessthe constraint-handling

schemesolves for it directly (as explained in the next section). Number of

panelsper element is usedwhen a span constraint is introduced. The chord of

eachelementbecomesa designvariable when parasite drag is included in the

objective function. The sizeof the optimization task scaleswith the number of

elementsusedto describethe wing.

6.3 Genetic Encoding

The genetic string is a concatenation of sets of variables, with each set describing

a lifting element. Dihedral is always included in the set, while Incidence, Number

of panels and Chord are added as required. To ensure viable decoding when

unequal crossover is performed, the crossover point in the second parent must

lie at the same point within an element description as the crossover point in the

first parent. Thus, when the first crossover occurs at a Dihedral variable, the

second must occur at Dihedral rather than, say, Number of panels.

The decoding of the genetic string assumes that the elements are attached

end-to-end. The position of each new element is determined by the position

and orientation of elements decoded before it. The assumption of connectivity

reduces the chance of non-viable candidates being described. The search space

is thereby reduced, so the population size required to provide a useful sample of

the domain is also reduced.

Each set of variables in the genetic string can be decoded to modify an

existing element or to add a new element. Modification of existing structure is

permitted so that near-optimal topologies described by a few large elements can

be refined by providing more detailed description of each element. When parasite

drag is important, for example, performance improvement can be achieved by

splitting a single element with constant chord into two elements with differing

100

!1

chord. A negativevalue for the Number of panels variable indicates that old

panels are to be adjusted, while a positive value causes new panels to be added.

An extended genetic string is used for problems that include constraints on

span and height. It carries three alternative values for each parameter, but only

one is expressed. The motivation for a string with unexpressed sections was

discussed in Chapter 4. The mechanism for controlling expression of alternative

values is described in the next section of this chapter.

6.4 Constraint-Handling

6.4.1 Geometric Constraints to Permit Analysis

Some arrangements of lifting surfaces are difficult to analyze using panel meth-

ods. When vortices approach control points too closely, the matrix of influence

coefficients can become ill-conditioned. If two panels lie directly on top of each

other (as happens, for example, when the dihedral of consecutive elements is

different by 180 degrees) the system is no longer independent, and there is no

unique solution. These limitations require the introduction of extra constraints

on the geometry of the candidate planform. Prior to aerodynamic analysis, the

geometry is checked to ensure that vortices and control points are well-separated,

that panels do not lie on top of each other, and that panels do not cross over

each other. Candidate designs that fail these checks cannot be analyzed by the

vortex-lattice code, so an alternative method must be used to assess their fitness.

It is possible to assign a fixed value to all non-analyzable designs, but correlation

of strings with performance becomes difficult if much of the population shares

the same fitness. In this situation, the designs that cannot be analyzed are dis-

carded from the population, and reproduction is continued until the population

is filled with candidates that have been analyzed.

101

6.4.2 Lift Constraint

The requirement for fixed lift cannot be handled by excluding from consideration

those designs which violate it. It is extremely unlikely that a wing with randomly

chosen incidence values would satisfy this constraint, so the search for feasible

members of the initial population would be extremely inefficient. Exclusion from

the population is not required, because techniques are available for analyzing

the infeasible candidates, and then either supplying a performance measure that

reflects the extent of infeasibility, or repairing the design to make it feasible.

Several possibilities are considered in this section.

Penalty Method

The standard method for handling constraint violations is to modify the objec-

tive function by appending a penalty that grows as the extent of infeasibilty

increases.

J : J_,_n + PenWt x (L - L,_q) _

Here, J is the objective value, J_,_,_ is the unconstrained objective value,

PenWt is a user-specified weighting factor, L is the lift generated by the candi-

date design, and L_q is the required lift.

Numerical investigations show that when penalties are used to enforce the

lift constraint, the strength of the applied penalty has a significant influence on

the optimization history. Typical histories are plotted in Fig. 6.2, for a wing

described by two elements and for a population size of 50. The number of panels

per element is fixed, so there are four design variables: dihedral and incidence

of each element.

A penalty weight of 2 is just sufficient to offset the induced drag benefit

of violating the constraint. Stronger penalties make it more difficult for the

genetic algorithm to find the optimum. Building blocks that help to satisfy

constraints are selected over those that reduce the objective, so that the best

building blocks may disappear from the population. Increasing the population

size reduces this sampling error, but greatly increases the number of function

evaluations required. Clearly, minimum penalty strengths are to be preferred.

102

.30

.29

.28

o .27

.26

_ .25

_= .24

.23

i." I
......................... _.{..__| _................................. _.......................... ;.................................

................ _! i ..

_.....I"" _ i
................................. - -_ _.................................. _...

...... 7--\, Penalty Weight = 1 O0

.............-i.............===

.................... i iL Penalty Weight-- 2. _i.................

0. 10. 20. 30. 40. 50.

Generation

Figure 6.2: Influence of penalty weight

Repair Method

The repair scheme used to satisfy the lift constraint is essentially a sub-optimization

in one variable. The incidence of each element is referenced to angle-of-attack

(previously fixed, implicitly, at zero degrees). The candidate design is repaired

by adjusting angle-of-attack to produce the correct lift.

Table 6.1 indicates the number of function evaluations requiredto find the op-

timum wing (which has maximum span, and elliptic spanwise lift distribution).

The genetic algorithm was run three times on each problem, with a different

randomly-generated starting population for each run, and the maximum num-

ber of function evaluations is listed in the table. Because there is no convergence

criterion for the genetic algorithm that is equivalent to the Karush-Kuhn-Tucker

conditions used by gradient methods, it is usually run for a fixed number of iter-

ations, or until there has been no significant improvement for many generations.

For these tests, the runs continued until the known optimum was found, but in

practice the genetic algorithm is more likely to be stopped when the best design

is not quite optimal.

103

GeneticAlgorithm SequentialQuadratic
Programming

Vars

2

4

8

16

C by
Penalty

Pop Evals

50 750

100 3636

200 14248

500 64127

CL by

Repair

Pop Evals

50 162

50 939

50 2065

50 6935

CL by

Constraint

Evals

22

86

303

819

CL by

Repair

Evals

3O

92

350

582

Table 6.1: Function evaluations for different search methods.

These results make it clear that the repair scheme for the lift constraint is

much more efficient than the penalty scheme, particularly as the number of de-

sign variables is increased. Problem size is changed by increasing the number

of elements used to describe the wing, and reducing the panels per element so

that the total number of panels is constant. The incidence and dihedral of each

element are design variables. As the problem size grows, it becomes increasingly

difficult for the penalty method to find a combination of variables to satisfy the

lift constraint, and the required population size must be increased to accommo-

date this search. When the repair scheme is used, the entire population always

satisfies the lift constraint, and a small population still provides an adequate

sample for the larger problems.

Table 6.1 also presents the number of function evaluations required by a se-

quential quadratic programming algorithm. The genetic algorithm uses an order

of magnitude more function evaluations for all problem sizes considered, even

with the best constraint-handling. (Note that the sequential quadratic program-

ming method is almost unaffected by the representation of the lift constraint.

In fact, explicit constraints are usually more efficient for that optimizer [32].)

There is no indication of a scaling advantage for the genetic algorithm. When

gradient methods can be used, they provide better performance than genetic

methods.

104

Analytic Solution of Optimal Incidence Distribution

The concept of using sub-optimization to satisfy the lift constraint can be ex-

tended, to include all incidence variables. This scheme has the further advantage

that it minimizes total drag for a specified arrangement of panels. Performance

is evaluated using the MULTOP program [101], in which linear equations rep-

resenting the relations between vortex strength and parasite drag, induced drag

and lift are constructed:

Dp = Do + {D1}. {7} + [D2]{7}" {7}

where

D,_d = [DIC]{7}. {7}

L = {LIC}. {7}

7 = vector of spanwise circulation strengths

Dp ---- parasite drag

D_d = induced drag

DIC = array of drag influence coefficients

LIC -- vector of lift influence coefficients

The objective for the sub-optimization problem is to minimize total drag,

while constraining lift to a specified value, L_q. Using a Lagrange multiplier to

handle the lift constraint, and defining [DIC'] = [DIC] + [D2], the objective is

given by:

d = [DIC'I{7}. {7} + {D1}. {7} + Do + AL([LIC]. {7} - L,_q)

The optimum occurs when the gradient of the objective function is zero.

Differentiation produces the following system of linear equations:

Solution of this system yields the vortex strengths that produce minimum

total drag subject to the lift constraint. Search by the genetic algorithm is

105

limited to dihedral and numberof panelsfor eachelement. This implementation

of the lift constraint improvesthe efficiencyof geneticsearch,so it is usedin the

optimization studies that are reported in the remainder of this chapter.

6.4.3 Span and Height Constraints

Without the imposition of geometric or structural weight constraints, the opti-

mal wing has very large span, and an elliptic chord distribution that produces

the optimal local lift coefficient everywhere. Therefore, span and height con-

straints are introduced to force the wing to lie within a box as shown in Fig. 6.3,

so that results will be of practical interest. These constraints are enforced using

a penalty method, with the penalty chosen to just offset the drag benefit of

violating the constraint.

Figure 6.3: Wing topology design with span and height constraints.

When the variable-complexity algorithm is used, these new geometric con-

straints are not always active. If the population stabilizes at a particular design

concept while they are inactive, it may lack the diversity needed to successfully

respond to a changed environment when the constraints become active. For this

wing design problem, elements with low dihedral, that combine to approximate

a planar wing, are initially favored. When the span constraint is encountered,

106

_i|.... !!

low-dihedral elementsareno longerhelpful. If they have dominated the popu-

lation to the exclusionof all alternative dihedral values, the genetic algorithm

must rely on mutation to identify further improvement.

To ensurethat there is sufficient diversity to handle activation of the span

and height constraints, the geneticstring is extended to include three copiesof

eachdesignvariable. Figure 6.4 showshow the string is decodedto construct a

candidatewing design.

Genetic string being decoded

Element Element Element
1 2 3

Dihedral Value 1 5 2 3 [

IDihedral Value 2 19 67 120

Dihedral Value 3 43 175 32 Element 1

|

5 2 3 I

I19 67 120
Element _t

43 175 32

5 2 3 Element 3 I
1

19 _7, 120 aaiv_,es l

43 175 32 constraint 1
m_D_

5 2 3 ,_fferent

19 67 120 section of

43 175 32 string

expressed

Design under construction

" i

Element 3

I
I

Figure 6.4: Decoding the extended genetic string.

The left side of the figure shows the encoding, with the variable currently

being decoded indicated by a bold border. On the right is a front view of the wing

being constructed, with the span and height constraints marked by the exterior

box. Wing elements are shown in bold, and labelled as they are added. When

no geometric constraint is active, the first copy of each variable is expressed.

When the span constraint is encountered, the second copy is used. If the height

limit is reached, the third copy is decoded. This arrangement allows different

selection pressures to operate in different environments. The importance of this

107

schemeis illustrated by the comparisonof results for standard and extended

encodings,included in the next section.

6.5 Optimization Results

6.5.1 Minimum Induced Drag

Initially, only induced drag is considered, because the theoretical optimum is

known to be a box wing [102]. For the chosen height-to-span ratio of 0.1, the

induced drag for the optimal wing is 21% lower than the drag for an elliptically-

loaded planar wing. Chord does not affect induced drag, so it is removed from

the set of design variables for this case.

A standard genetic algorithm operating on a fixed number of elements has

difficulty finding any wing that can be analyzed. Each wing has 12 elements,

so the combination of random dihedral values is very likely to position vortices

from one element close to control panels from another. Even when wings can be

analyzed, the algorithm struggles to find any designs that fit inside the box. The

average element in the initial population has 4 panels, so the average wing has 48

panels to fit inside a box of semi-span 20 panels and height 4 panels. Elements

of low span and moderate dihedral are favored. The selection pressure to satisfy

the geometric constraints opposes the pressure to minimize drag. When the

constraints have been satisfied using all available elements, it is difficult to allow

further extension of the wing. Any extension can only be achieved by increasing

the span of an existing element, and this is likely to produce constraint violation.

This process is illustrated in Fig. 6.5, which gives a history of the best individual

design in the population at various stages in the optimization run.

For the variable-complexity algorithm, the average element in the initial

population also has 4 panels. However the average wing has only 6 elements,

and a total of 24 panels to fit within the box. It is much easier to satisfy the

geometric constraints' and consequently there is more freedom to work on drag

minimization. If diversity is lost from the population too early, though, there

is no dihedral value that can cope with the height constraint, and improvement

108

1i !

Generation I C di = 0.0167

Generation 3 C di = 0.0180

Geae_t_oa 7 C di = 0.0175

Generation 17 C di = 0.0170

Genel-afion30 Cdi = 0.0167

Gene_ion 46 Cdi = 0.0164

Genoration 84 C di = 0.0163

Generation 117 C di = 0.0163

Figure 6.5: History of best individual in population for standard genetic algo-
rithm.

109

stalls with the constraints active (Fig. 6.6). Winglets are quickly discovered,

and are retained throughout the optimization history. There is never strong

preferencefor flat elements,but selectionpressuredoesfavour dihedral between

0 and 90 degrees.Winglet extensionsareneverdiscovered.
When there are redundant copiesof each variable, constraint activity can

causeexpressionof different copies. The third copy of the dihedral variables

experiencesno selectionpressureuntil the height constraint becomesactive, so
it still has random dihedral valuesavailable. It is possibleto add moreelements

and discovermore complexdesigns.Results for this caseareshownin Fig. 6.7.

In the original population, the best designhas reasonablyhigh span and is

relatively flat. Almost immediately,wings of the maximum spanare developed,

and vertical elementsare present at the tips. The main wing is then refined

to be closer to horizontal, and the first nearly horizontal winglet extensions

are seen. Finally, when the main wing and winglet are closeto fully refined,

further improvementis achievedby increasingthe spanof the horizontal winglet

extensions.

Thesegeneraltrends arealsoreflectedin the wholepopulation, asshownby

the superpositionof the right half-wings of the entire population, in Fig. 6.8. In

the first generation,which is randomly generated,therearedesignswith extreme

dihedral, but no individual with the maximum possiblespan. By generation50,

almost all designslie within the box, and havelarge span. At generation 100,

most main wings arecloseto flat, therearemany vertical winglets and a couple

of nearly horizontal winglet extensions.In the final generation,the main wings

areevencloserto horizontal, and many more "C-wings" arepresent.

There is significant diversity in the population even after 150 generations.

The prematureconvergencethat often limits the performanceof standardgenetic

algorithms is not evident here. This is due to the novel crossoveroperation,

which can produce new designsas offspring evenif both parents are identical,

by acting at a different location in the geneticstring of eachparent.

The best designsproduced after 150generationsof population size500 are

shownin Fig. 6.9. Rather than concentratingresourcesin a single long run,

II0

Ge_ I C di = 0.027"0

Generation 3 C di = 0,0191

Generation 7 Cdi = 0.0178

Generation 14 Cdi = 0.0178

Generation 23 C di = 0.0168

Generation 34 Cdi = 0.0169

Generation 66 C di = 0.0169

Generation 94 C di = 0.0168

Generation 124 Cdi=0.0168

Figure 6.6: History of best individual in population for variable-complexity al-

gorithm with regular encoding.

iii

C,cn_ation I Cdi= 0.0265

Generation3 Cdi= 0.0206

Generation6 Cdi= 0.0191

C.,cu_atlonI0 Cdi = 0.0177

C-_ara6on 15 C_ = 0.0176

L
Generation40 Cdi = 0.0167

Geaara6ou 5"OCdi= 0o0165

Gea_atloo 65 C = 0.0161
d i

L I
Ge.ne_alion75 Cdi = 0.0161

_alioa 90 Cdi = 0.0160

Ge_e_rationI00 Cdi = 0.0159

V"
Gcn_'a_on II0Cdi = 0.0155

[- _1
C,cneration120 Cdi = 0.0157

Figure 6.7: History of best individual in population for variable-complexity al-

gorithm with extended encoding.

112

_t 1!1

Generation 1

Generation 50

Generation 100

Generation 150

Figure 6.8: Superposition of all right half-wings in population.

113

computer time is split between several shorter runs. Results for four different

randomly-generated starting populations are included. The final geometries are

quite different in each case, although performance is quite similar (and always

far superior to the performance of the best planar wing). The first two runs

produce good designs that differ markedly from the true optimum. These indi-

cate design opportunities that might be preferred for reasons not modelled in

the optimization problem, that would be missed by focussing too early on global

optimality.

Best design at

___ Run 1 generation 150

"_ 1.9 _[....... Run 2

17 , r- Run3---1

1.5
0. 50. 100. 150.

Generatio-

Figure 6.9: Optimization histories for minimum induced drag. C4, = 0.000

In the last two runs, the final result closely approaches the theoretically

optimal box shape. Only very slight potential for performance improvement

remains, and the selection pressure to further extend the upper wing is very

low. Although the exact optimum is not located, the nature of the best solution

is clearly identified.

114

Table 6.2: Levelsof parasitedrag.

6.5.2 Minimum Parasite Drag

Consideration of parasite drag complicates the optimization task for non-planar

topologies. The best load distribution for induced drag is not optimal for total

drag. The total vertical load is constant (fixed total lift) but the best distribu-

tion of vertical load depends on the loading of non-planar elements. Load on

these non-planar elements can reduce the induced drag of the planar section by

redistributing the load in that region, but at the cost of increasing parasite drag

locally. Non-planar elements are expected to be smaller and carry less load as

parasite drag becomes an incre_ingly important component of total drag, but

a theoretical solution for the optimal topology is not available.

The parasite drag coefficient is assumed to vary quadratically with section

lift coefficient, Cz:

= + C lCz + Vd2¢

The relative importance of parasite drag can be modified by varying the

coefficients Cdo, Cdl and Cd_. The zero parasite drag case has already been

discussed. In this section, two further cases are considered, as indicated in

Table 6.2.

The genetic algorithm now uses three variables to describe each wing element,

with chord being introduced to reflect the influence of element area on parasite

drag. Population size is increased to 800, and number of generations to 250, to

handle this larger design space.

The convergence histories and elevations of final designs for Case 1, shown

in Fig. 6.10, are similar to those for the case of zero parasite drag. The chord

of the winglet extension is very small. For the prescribed total lift coefficient

of 1.0, parasite drag is only 20% of the total, but the benefit of the extensions

115

for induced drag is already almost completely offset by their contribution to

parasite drag. The combinedarea of the winglet and extension is 9.6%of the

planar area.

2.5

,_ 2.4
"g

'_ 2.3

o 2.2

r_

N

_ 2.1
III

Best design at

--- Run I generation 250
Run 2

Run 3

....... Run 4 Run 1

l_ _,.... _ Run 2

| i L-
.. _ Run 3 _

''"_-u__ "'-'--_-'-' Run 4

2.0 I I I I

0. 50. I00. 150. 200. 250.

Generation

Figure 6.10: Optimization histories. Case 1. Cd_ ----0.004

Figure 6.11 indicates that a single solution becomes clearly optimal as the

relative importance of parasite drag increases. Horizontal winglet extensions

are not beneficial, but the winglets are all of maximum height (10% of span).

Winglet area is 6.6% of planar area, so nonplanar area is indeed reduced as

the importance of parasite drag increases. With parasite drag contributing 40%

of total drag, the genetic algorithm gets very close to the correct chord and

dihedral distribution.

6.5.3 Summary of Results

These results confirm that the optimal topology is sensitive to the level of para-

site drag. The nature of the best solution is similar for all cases, with the wing

116

v-I

tim

¢,m
@

"o

"o

N
._m
e_

3.1

3.0

2.9

2.8

2.7

_i _ Runl

_l_n._ Run 2
_'h "- ------ Run3

], _ _ Run4

L _

Best design at
generation 250

t_.____....____d
Run

i__.- 1 ___1
Run

Run

l 3 i
Run

4

2r---'*'T

2.6 1 I I 1
0. 50. 100. 150. 200. 250.

Generation

Figure 6.11: Optimization histories. Case 2. Cd_ = 0.010

117

being wrapped around the edge of the box, and the arc-length being reduced

as parasite drag increases. There is no simple analytic prediction for the best

arc-length for an arbitrary level of parasite drag, but the variable-complexity

algorithm converges successfully to the correct shape (Fig. 6.12).

Cd = 0.0000
p

Cd i = 0.0157

- 0.0040
Cdp-

Cd i = 0.0163

Cdp= 0.0100

Cd = 0.0169
it

Figure 6.12: Comparison of optimal topologies for different levels of parasite

drag.

These results are all for a lift coeffici@nt of 1.0. For realistic cruise lift coeffi-

cients, induced drag contributes a smaller fraction of total lift, and winglet area

is expected to be further reduced. Inclusion of structural weight constraints will

also influence the optimal design. Such considerations will be incorporated in

future investigations of complete aircraft configurations.

118

'I I:

6.6 Comparison with Calculus-Based Optimiza-

tion

The integration of panel methods with calculus-based optimizers is problematic

if panel width is allowed to vary. This difficulty was a motivating factor driving

the decision to use genetic algorithms in this domain. Even when panel width

is constant, however, calculus-based optimizers can have trouble. Simultaneous

consideration of the conflicting requirements for minimum drag and acceptable

geometry causes a wing of fixed arc length to fold into non-optimal shapes that

are strongly influenced by the initial arrangement of lifting surfaces. Figure 6.13

shows the results of three optimization runs from different starting points. In the

second run, the wing folds into a geometry that cannot be accurately analyzed

by the vortex-lattice method, and the optimizer cannot move from this illegal

design. Clearly, the calculus-based method produces unacceptable results when

used alone.

Calculus-based methods can be usefully combined with genetic methods to

improve the quality of the search. In the truss optimization studies presented

in the Chapter 5, a hybrid method was constructed, with the smooth subspace

being optimized for each candidate topology generated by the genetic method.

Such a scheme is not appropriate here, because calculus-based optimization

would increase the cost of each function evaluation by three orders of magnitude.

Instead, the final design produced by the genetic algorithm is refined by calculus-

based optimization of dihedral and chord. Figure 6.14 shows the influence of

this refinement on the design for the low level of parasite drag. It yields a

1.5% improvement in total drag. When the parasite drag level is increased, final

refinement produces less than 0.25% improvement in total drag.

The efficiency of calculus-based optimization in the neighborhood of the

optimum confirms that the exact solution should not be sought by the genetic

method. Several runs from different starting populations can identify several

near-optimal candidate topologies. The calculus-based method allows accurate

119

__ Initial geometry

_i] Cd = 0.0202

___'_ --_-'_.__ Final geometry

_ "_= 0.0169

_ _ .,_._ Initial geomeU'y

iii_ __-- Cd= 0.0117

_/__ .,,,,,._. _ Final geometry

__ __ Initial geometr)

i i:ii, ii: ii Cd=0.0o70

___ Final geom?_ =

Cd = 0.0174

...._ii:::ii:: Span co nstraint

Figure 6.13: Calculus-based optimizer is trapped at local minima.

Genetic optimization

identifies appropriate_

Cd = 0.02060 optimization ref'mes

dihedral and chord

Cd = 0.02030

Figure 6.14: Final refinement by gradient-based optimizer.

120

111!

comparison of competing concepts. Once again, different optimization methods

used in combination are more effective than either single method.

6.7 Summary

The application of genetic algorithms to topological design of wings has again

demonstrated importance of constraint-handling for these methods. The form

of constraints strongly influences algorithm efficiency. Repair methods generally

reduce the size of the search space, so that small populations provide an accurate

sample of useful building blocks. Penalty methods can be applied more generally,

but the penalty weight should be chosen so that performance declines gradually

as the margin of constraint violation increases.

Attempts to optimize non-planar topologies using fixed-complexity represen-

tations of the wing were unsuccessful. In all cases, the wing was folded to satisfy

the geometric constraints, but the nature of the folding was strongly dependent

on initial conditions, and suboptimal topologies were always produced. Fixed-

complexity wings all use the maximum number of design variables, so the cost

of each function evaluation is relatively expensive. Calculus-based optimiza-

tion can make a limited contribution in this domain, by efficiently refining the

detailed geometry of a specified topology.

The variable-complexity genetic algorithm is better able to separate the in-

fluences of the objective and the geometric constraints. An extended encoding,

with several entries for each variable, helps to achieve this separation. Expression

of different sections of the string is controlled by environmental factors. Selection

works on one part of the string when constraints are inactive, and at different

points when constraints are activated. Distinct strategies are evolved to cope

with changing environmental circumstances. This extended encoding scheme

is an important development for evolutionary optimization in constraint-bound

domains.

121

YiI".

Chapter 7

Genetic Optimization in the

Quasi-Procedural Environment

The last four chapters have shown that genetic algorithms are effective search

tools, both in standard fixed-complexity form, and with variable-complexity

representations permitted. Their usefulness is increased when they are applied

in conjunction with calculus-based optimizers. In this chapter, the integration

of a genetic algorithm into the general design system is described.

The interaction between the quasi-procedural executive and genetic algo-

rithms provides two chief benefits. Re-ordering the population so that similar

individuals are evaluated consecutively minimizes the cost of assessing each gen-

eration during optimization. When the variable-complexity algorithm increases

the detail of the parameterization during optimization, the quasi-procedural

system can automaticaIIy adjust the computational path to include more so-

phisticated analyses that make use of the extra parameters. These benefits are

discussed in this chapter.

122

7.1 Efficient Evaluation of the Population

In Chapter 2, it was shown that the quasi-procedural method can reduce opti-

mization time when performance updates are calculated after only a few vari-

ables have been modified. This is a common situation in genetic optimization,

because most variables do not change value under the action of the genetic op-

erators. Offspring share at least half of their variables with a parent. When the

common features are recognized, only a subset of the performance parameters

need be updated.

Some members are exact clones of a parent, when they are reproduced with-

out crossover or mutation. Evaluation of these members is not required. The

performance of the parent is inherited at the time of reproduction.

When mutation occurs without crossover, most variables are unchanged.

Even when crossover occurs, at least half the design variables are inherited

directly from one parent. If all information about the parent is retained, and can

be loaded as the current design, the update is relatively cheap. The standard

system, however, retains detailed information only about the last candidate

design that was evaluated. The memory required to store the complete database

for each member of the population is prohibitive for complex problems. A

parallel version of the genetic algorithm, with the population distributed over

many machines, might alleviate this difficulty, but such an implementation is

beyond the scope of this work.

Apart from the similarity between parents and offspring, the genetic algo-

rithm produces similarity between members of the same population. The highest

fitness members of one generation can participate in the production of several

offspring, and these offspring are expected to share some characteristics. The

population can be arranged so that similar individuals are evaluated consecu-

tively. This reduces the number of variables being updated, and consequently

the computational expense of the updating.

123

7.1.1 Measuring Difference Between Population Mem-

bers

Before the population can be ordered according to difference, a scheme must be

developed to measure that quantity. Efficiency is influenced by the number of

invalidations that occur when the values in the database are changed. The extent

of change for any variable is unimportant, because all changes for that variable

cause the same invalidations. Different variables cause different numbers of

invalidations, so the difference measure should take account of which variables

are changed, rather than simply counting the total number of changes. For

many tightly-coupled aerospace systems, some design variables can influence all

the analyses. When two population members have different values for one such

variable, they are completely different, because consecutive evaluation would

result in maximum computation for the second design.

The variables should be arranged according to the number of modules that

are invalidated by them. With the assumption that there is an order that

produces an increasing number of invalidations1(i.e, that the set of invalidations

caused by the variable in position m is a subset of the invalidations caused by the

variable in position m-}- 1), the difference between two designs can be measured

by noting the last variable that has a different value in each of them. The order

of difference between two population members is m, where m is the position of

the last different-valued variable in the ordered set of design variables.

When the extent of the difference in each variable is also noted, a comparison

of the entire population with the current best individual can be used to infer

the difference between any two individuals in the population. Individuals with

the same order of difference to the current best need to be ordered relative to

each other. The extent of their difference in the variable at position m is used

to do this, because members with the same value at m should be evaluated

consecutively. The difference metric should therefore account for the extent of

1This assumption was discussed in Section 2.3.2, on ordering variables for gradient com-
putation. It is not always exactly true, but for tightly-coupled problems the number of un-
necessary computations that result from its violation is generally small.

124

all differences between the current best design and each design in the population.

The metric used here to compare the Best member with the ith member is:

N

DiffVal(Best, i) = _ diff(m)

where

m= 1

{ 10,_- 1(0.55 + 0.45(_a'(_"_)-'_'fs_st"_) _
range(m) sJ

diff(m) = 0

if var(i, m) _ var(Best, m)

otherwise

N is the number of design variables and range(m) represents the allowable

range of values for the variable at position m.

Once the difference values have been assigned, the population members must

be sorted for evaluation in the correct sequence. They are arranged according

to increasing value of DiffVaI. The Shell sorting algorithm [103] is used. The

operations required to sort a population of size M is on the order of 1.5Mlog2M.

7.1.2 Performance of the Ordering Scheme

A simple aircraft synthesis task was used, in Section 2.3.2 of this thesis, to

evaluate the influence of ordering on gradient calculation. A similar task is

appropriate for the current study, except that Number of Engines, Number of

Wing-Mounted Engines and SeatsAbrvast are added as extra design variables.

With these discrete-valued variables included, search should be conducted by

the genetic optimizer rather than the calculus-based method used in Chapter 2.

Figure 7.1 shows the best arrangement of design variables for this task. Each

column of the grid in that figure is associated with a design variable, and each

row is associated with an analysis subroutine. A shaded box in the grid indicates

that the analysis routine Of that row needs to be executed when estimating the

gradient for that column.

The figure shows that only 4 design variables (Altitude.FinalCr, MachNum-

ber.Landing, MachNumber. TO, FlapDeflection.TO) produce significantly fewer

subroutine invalidations than the other variables. Unless consecutive population

members differ from each other in only these four variables, the quasi-procedural

125

!!! !

FUSEGM

LFL2. 5

CRVKTS

TA LGM

E2_G]5IE_OAVG

_bIG _ECLIM B

_G _E A_I'CR

_GRE _ALCR

CL.TO

W IqGGM

TO FL25

LOADS

_GEOM

CLW MAX_CR

CLW MAX/_A LCR

CLW MA X IAND RG

CLW MAX.TO

CLW MAXCLIMB

COMPCG

PDRAG ELIMB

PDRAG .I__C R

PDRAG 2_ALCR

COM PW T

CL 2S]TCR

CDRAG l_ _'CR

CG_M PTY

CGEST.TO

CGEST CL]4 B

CGEST Iq_CR

CGEST 2NA LCR

CGEST LANDRG

DRAG l_ _'CR

GEAR

DRAG/_I_CR

TR]_ _CR

W EIGHT

DCM DCL/q _CR

DCMDCL21qA LCR

DCMDCLDE

DCM DCL J_AND _4G

TRR IAND _G

CL/_ANDRG

TOROT

DCMDCL.TO

CLELIM B

DCMDCL E LI_ B

TR]4/_RA LCR

CL2_ALCR

DRAG 2]NA LCR

DRAG 21qA LCR

CDRAG 2_A LCR

RANGE

COST

CL]4B2

DRAG ELIM B

TR]4 ELIM B

TR]q .TO

STABL;Y

Figure 7.1: Best arrangement of variables to minimize computation required to

evaluate the population.

126

method is unable to greatly reduce the computation required to evaluate the

population. Indeed, comparison of computation for unsorted populations with

computation for sorted populations confirms that the quasi-procedural method

only reduces the work by 10% when sorting is exploited. While this influence is

somewhat problem-dependent, sorting is unlikely to have a dramatic impact on

computational requirements for the genetic algorithm.

7.2 Computational Path Generation

The applications of the variable-complexity genetic algorithm presented thus

far have each used a single type of building. Designs are composed of similar

elements, and complexity changes as the number of elements changes. The

algorithm can also be used for designs composed of several types of building

block.

The complexity of description for aircraft synthesis studies increases in this

fashion. A wing may be initially described by gross parameters such as Wing

Area, Wing Sweep and Thickness-to-chord, but later in the design process flaps,

slats and chord extensions are likely to be considered, and more detail will be

added for the basic wing, by prescribing twist and thickness distributions. Anal-

yses that use gross parameters to estimate performance will not be appropriate

when local properties are supplied, so more complex analyses must be used.

The quasi-procedural executive generates an efficient computational path

automatically, while most database systems require a user-specified procedure.

This ability is particularly helpful when the computational path changes dur-

ing optimization, because most systems would require user intervention at that

point. The freedom to supply more than one analysis to compute the same out-

put variable is a new feature of the updated quasi-procedural system (described

briefly in Chapter 2). It can be used, in conjunction with the variable complex-

ity genetic algorithm, to switch analyses depending on the inclusion or omission

of detailed variables in each candidate design in the population.

127

i_I l i

A simpleexampleof this processisoutlined here. WingPosition is a variable

that refers to the location of the wing on the fuselage (measured as a fraction of

fuselage length from the nose of the aircraft). It is included in the optimization

task to allow satisfaction of constraints on trim and stability. Human designers

often avoid such considerations at the conceptual design stage, deferring the

choice of wing location until the preliminary design stage. Figure 7.2 illustrates

how a variable-complexity design task can use WingPosition as an optional

variable.

PLACARD]

1
i _S_M II rAmGM i I t_S I I rO_,_X I

I co_wr I I WEIGHTI [ENGEOM
WingP _ _

I w_Ne_M I L__.Y_ _T° J I_S °_c° ,1

I Slm_-s'rAB I I _UE-ST_ I

MinStability

Figure 7.2: Alternative computation paths for MinStability depend on specifi-

cation of WingPosition.

The boxes in this figure represent analysis subroutines, and the lines connect-

ing the boxes represent information transfer between routines. The figure shows

two alternative computational paths for updating the value of the MinStability

constraint. When WingPosition is included in the genetic string, the TRUE-

STAB subroutine is used, and complex analyses produce an accurate evaluation

of stability. If WingPosition is omitted, the SIMPLE-STAB subroutine pro-

duces a default value. Note that this is not the same as providing a default

value for the input variable, WingPosition, because such a value would run the

128

complexanalyses,but still only producean estimate for stability (basedon the

default valueof WingPosition). The significance of avoiding the complex anal-

yses can be appreciated by noting that 19 of the 58 subroutines listed in Fig. 7.1

do not need to be executed when accurate assessments of trim and stability are

not required.

A detailed development of this methodology requires a careful investigation

of the role of each design variable in the optimization task. Design variables

which exert strong influence on particular constraints without greatly affecting

- the objective can be omitted from the variable-complexity encoding. New analy-

ses, needed to estimate the constraints when the appropriate design variables are

unavailable, must be provided. Such work lies beyond the scope of this thesis,

but it should be conducted when more accurate and flexible analyses are used

for aircraft synthesis studies. An appropriate task is described in the Future

Work section of the next chapter.

129

Chapter 8

Conclusions and Suggestions for

Future Work

This thesis presents several new developments aimed at expanding the role of

formal optimization in the aerospace conceptual design process. The complica-

tion of accurately analyzing tightly coupled aerospace systems is generally ad-

dressed by parameterizing the entire design, and iteratively adjusting the input

parameters. Although this approach has the character of an optimization pro-

cedure, three aspects of existing design systems limit the range of applications

handled by available optimization algorithms. Flexibility needs to be increased

in the architecture that integrates analyses and optimizers, in the optimization

algorithms themselves, and in the parameterizations used to formulate specific

optimization tasks. This chapter summarizes contributions that have been made

in each of these areas, and provides suggestions for future work on all of them.

130

8.1 Conclusions

8.1.1 Integration of Analyses and Optimizers

The quasi-procedural architecture uses a loose-coupling approach to integrate

analysis modules through a central databasel It automatically generates a com-

putational path, whereas most database managers require a user-specified proce-

dure. Consequently, it was chosen to control the design system developed here.

The basic architecture was extended and enhanced, so that it could handle more

general data types and more complex analyses. It was combined with NPSOL,

a high quality calculus-based optimization algorithm, to produce a baseline de-

sign system. Apart from the practical benefit of providing a useful optimization

tool for industry, this system allows comparative assessment of new capabilities

introduced here.

The efficiency of the quasi-procedural architecture for large scale tasks was

confirmed by using it to integrate complex analyses for aircraft synthesis studies.

The flexibility and extensibility provided by this architecture became more valu-

able as the system size increased. A procedure was outlined for automating the

modification of existing source code to communicate through the database. The

influence of analysis structure on optimizer efficiency was also investigated. Re-

placement of iteration loops with extra design variables and constraints reduced

analysis effort. Optimization algorithms were modified to improve performance

through exploitation of the quasi-procedural executive.

8.1.2 Optimization Algorithms

The statistical mechanism of genetic optimization has been critically evaluated,

and key requirements for successful location of the optimum were identified.

There must be a correlation between pieces of the genetic string and perfor-

mance of the design, so that superior designs can be constructed by recombin-

ing building blocks from different ancestors. The population must be sufficiently

large for promising features to be recognized and retained. The appropriate size

depends on the topology of the design space, which is affected by encoding and

131

constraint-handling. Repair methods satisfy constraints efficiently, but they

must be developedas part of the analysis system for each domain. Penalty

methods are more generallyapplicable,but weightsshould be chosencarefully

so that penalties for violation are increasedgradually. The influence of these

implementation issueswasdemonstratedby application to interplanetary trajec-

tory design.The geneticalgorithm provided moreconvenientand moreefficient

location of the optimum than the grid searchtechniquecommonly usedin this

domain.

A geneticalgorithm shouldbeusedto identify near-optimal rather than fully

optimal designs,becausegradient methods are generally more efficient in the

neighborhoodof the best concept. The flexible designenvironment allowscon-

venient switchingbetweenoptimization alternatives,asthe appropriate method

changesduring designdevelopment.The population of candidatedesignscanbe

usedto identify severallocal optima simultaneously,by introducing speciation

operators. The designer'schoicebetweennear-optimal conceptsmay be driven

by considerationsthat werenot modelled in the formal optimization task.

The creation of a variable-complexity algorithm, which works with genetic

encodingsof variable length, wasdriven by an understandingof the importance

of building blocks and encoding. Large numbersof variablesincreasethe num-

ber of building blocks in the string, so correlation betweenindividual building

blocks and performanceis difficult. If simple encodingsare usedinitially, useful

buidling blocks aremore readily identified, and can be re-usedin morecomplex

descriptions as optimization proceeds.This processis discussedfurther in the

next section.

8.1.3 Flexible Parameterization

A variable-complexity genetic algorithm was created to allow parameterization

to change during optimization. It is able to start with a simple description that

captures the gross features of a design, and add detail as the design matures.

This broadens the scope of formal optimization for automated conceptual design.

132

The blockstackingproblem showedthat fixed-complexity encodings are de-

ceptive when a poor value for a single variable causes catastrophic performance

for an entire design. Variable-complexity encodings that initially use fewer vari-

ables are less likely to include such a poor value, so promising building blocks

are more readily identified. In general, simple descriptions make it easier to

correlate performance with each building block in the encoding.

The process of decoding the variable-complexity string is similar to embry-

onic development. Later sections of the string modify the structure produced

by earlier decoding. This process allows environmental factors to influence de-

velopment, and also allows limited performance assessment to be conducted

while construction is in progress. Discovery of optimal wing topologies relied

on development being guided by constraint activity. The genetic string was ex-

tended to include alternative encodings for each variable. Different copies were

expressed when constraint activity changed. Appropriate values for different cir-

cumstances were selected independently. The design is essentially constructed

as it is decoded, so the extended genetic string should prove useful for handling

manufacturing considerations that are often omitted from aerospace optimiza-

tion tasks.

Application of the new algorithm to topological design of trusses demon-

strated that optimizer performance improved when domain-specific knowledge

was incorporated in the variable-length encoding. Candidate structures were

forced to include attachments to the fixed nodes and to the loaded node. Mech-

anisms and unloaded structures were removed from consideration. In general,

variable-length encodings that describe only the elements that appear in the de-

sign are more natural and more efficient than encodings that refer to all possible

elements.

8.2 Suggestions for Future Work

The study of the relationship between optimizer and analyses suggests several

possibilities for improvement Automatic differentiation could increase optimizer

133

_!I 11 _:

efficiency by avoiding the cost of finite-differencing to estimate gradients. The

method used to remove iteration loops, which shifts the task of matching the

values of two variables from the analyses to the optimizer, can be extended to

isolate the set of analyses into independent groups. An optimizer would then be

responsible for co-ordinating the execution of each group, and checking that they

use consistent values for all parameters. Modification of the quasi-procedural

executive, to permit parallel execution of subtasks, would further increase the

flexibility and efficiency of the design package.

Genetic optimization requires a large number of function evaluations to iden-

tify promising building blocks in candidate designs. Future development should

include parallelization of the algorithm, to reduce the time required for conver-

gence. This should be achieved quite simply, because evaluation of different pop-

ulation members is already conducted independently. Genetic algorithms could

be improved by the introduction of more advanced reproduction operators, such

as duplication and deletion. The speciation function used with the standard

genetic algorithm should be modified for the variable-complexity method.

The potential benefits of flexible parameterization for general optimization

have not been fully explored here. A more general investigation of shape gram-

mars for topological design is warranted. The major applications of the variable-

complexity algorithm in this thesis used a single type of building block, and

varied the number of blocks during optimization. Further study of tasks which

involve several types of variables should be conducted. A full aircraft synthesis

task that includes structural and aerodynamic variables, with manufacturing

and structural weight constraints as well as performance requirements, would

be a suitable candidate for this investigation. It would also permit further study

of the importance of quasi-procedural path generation for variable-complexity

optimization.

134

Appendix A

Technical Details of

Quasi-Procedural Architecture

A.1 The Quasi-Procedural Method

The quasi-procedural method is a form of event-driven program. The method

may be triggered by the user who requests the value of a variable, or by a subrou-

tine that can also request the value of a variable needed for further computations

(Fig. A.1).

GET A_
4 4

QPM

d
SubroutineCL

Get (A)

Return
End

Figure A.I: Quasi-procedural method may be triggered by user or subroutine.

135

The quasi-procedural method differs from conventional programming archi-

tectures in that the program is not strictly procedural. While a conventional

program proceeds from all of the inputs to all of the outputs, a quasi-procedural

program invokes only the subroutines required to produce a valid value of the

requested variable. The program is flexible, because it builds a new procedure to

find each requested variable. It is efficient because the procedure that it builds

always performs the minimum computation required to update the requested

variable.

In Fig. A.2, boxes represent analysis routines and lower case letters represent

variables. If we need to compute the value of n, for instance, a conventional

program would require that we specify a-f and run all of the routines A-G. In

the quasi-procedural method, the system recognizes that only routines B, C,

and G need to be run and only the inputs c, d, and e are necessary. It does

this by actually calling the subroutines from the bottom, up. Execution of each

routine is suspended while the path is constructed, and is resumed procedurally

after the path is complete.

b gc d e f l _ b c d • .__ 5
3 3

4 2

1 m n o 5 1 rn n v |

Conventional Program Quasi-Procedural Method

Figure A.2: Quasi-procedural method executes only the necessary subroutines.

The system starts with the variable n. It checks the database to get in-

formation about n. If n is valid, the system takes its current value from the

database. If it is invalid (as it is in this example), the system takes the name of

the routine which will deliver n as output, and runs it. Here, that routine is G.

136

When routine G is called, it needsvaluesfor its input variables,j and k. To get

j, the system runs routine B, and to get k, it runs routine C. Finally, execution

of routine G can be resumed, and the updated value of n is produced.

All of this computational path generation is handled by the subroutine GET,

which is included in the quasi-procedural executive. A flow chart for compu-

tational path construction by this subroutine is shown in Fig. A.3. Figure A.4

indicates how the GET subroutine is called recursively during path construction.

With the appropriate computational procedure generated automatically, de-

velopers of the analyses need only be concerned with writing the relevant pro-

cedural portion of the system: the individual computational routines. These

should be written in standard Fortran, with calls to subroutines in the Genie

library included in an appropriate way.

A.2 Consistency Maintenance

The above description of quasi-procedural execution mentioned that the validity

of each variable is checked when it is found in the database. An invalid variable

is inconsistent with the current set of specified inputs. If a computation were

run to update the value of that variable, its value would change. The variable

would also become valid, because the value produced by the calculation would

be consistent with the input set. This makes it clear why a computation is

performed only if the variable is invalid. A computation for a valid value does

not change its value, so it is a redundant calculation. The tracking of variable

validities is called consistency maintenance.

When the system is initialised, all the computed results are invalid. A result

variable becomes valid by being computed. It will only return to being invalid

if any specified input on which it depends is changed. The simplest consistency

maintenance scheme would label all results invalid whenever any specified input

value was modified. However, this conservative scheme would be inefficient,

producing many redundant computations. Consider a simple example. Fuselage

diameter depends on seat width, number of seats abreast, and aisle width, but

137

:| |!

[Get VarName [

Set-building _ _'x Y /fVarName Valid ? "_

t Known ? J [

f"
Run PARENT Routine

! Assemble inputs to PARENT

For i = 1, Number-of-Inputs
Get Variable(i)

Continue

! Perform computations
! for VarN_uue, to get
! valid value.

½
(S_'b¢ilding = On ?) Y_ Do i = 1, Recu_ion

between level i an_ -'-_'"_
Jevel Recursion? J J.

, _ , Wri_bl__ I

Routine opea at [Routine open at level i

level i depends | depends partially on

fully on PARENT[PARENT. Pushed
variables which are

inlmts to PARENt are
exc_JOl_.

Continue

Ir

I Deliv_VarName]

Figure A.3: Flow diagram for the GET subroutine.

138

(a) The system isrequiredtocompute the valueof k,an invalid

output variable.The variable• isspecifie,d,so itisvalid.

This simple system is a subset of the one shown in Fig. A.2.

'Compute k [

[R_'_i°!_v°l ; ° [

Recursion

!iiiiiiiii!iiiili!iiiiiiii

_ent
Recm'sion

Level

 iiiiiiiiiii!ii iiiii

 iiii:ilTiiiilili!iliiiiiiiiiiiii

Decrement
Rect_ion
Level

(b) Computation of k.

iliiiiiiiiiiiiiiii

!iiiiiiii!iiiiiiii
i:iii!_ilililili
::::::::::::::::::

iiiiiiiil;iiii!;ii
!i!i!i!i!i!_i!!_!i
'2":2"2"2"2"2"2"2

!iiiii_iiiiiiiii!iiiiiiiiiiiiiiiiiiiiiiiii
...... lP__%_

iiiiiiiiiiiiiiiiiiiiiiiiii!!i!
3 !iiiiii!ii !ilililii

";':':':':';'i_!!!i!iii:i!iii:iiiiiiiiiii_

ere __i:i_i!_i:i:iiii:i

Decrement

Recutsion

Level

Each lighdy shaded box represents the GET routine, which

is described in detail in Fig. A.3. The sections of the GET routine

which are actua]ly run are marked with the darker shading.

GET is first called to deliver k. k is invalid, so Subroutine C is launched.

As Subroutine C is run, it issues a call to GET e. Execution of

subroutine C is suspended, until the valid value of • is delivered. The

consistency maintenance scheme records the dependence of k on e.

Figure A.4: Recursive calls to the GET subroutine during path construction.

139

it doesnot dependon wing area. When the wing areais modified by the useror

the optimizer, the simpleconsistencymaintenanceschemewill label the fuselage

diameter as invalid. But if fuselagediameter is recomputed, the value will not

change(becauseit is not dependenton the modified input variable,wing area),

so it should really be labelled as valid. An efficient consistencymaintenance

schememust invalidate only the computablevariables which are dependenton

the modified input variable.

Dependencyinformation canbe derivedduring the calculation of computed

results,becausethe computedresult dependson the inputs to all the subroutines

called during the courseof the computation. Consideragain the exampleused

in the explanation of the quasi-proceduralmethod (Fig. A.5). The diagram of

computational paths is similar to a family tree, and the analogy with genealogy

is a strong one. The dependencyrelationship 'n dependson f is the same as 'n

is a descendant of f, or 'j is an ancestor of n'.

a b ¢ d • f

1 m n o

Figure A.5: Consistency information is developed for the shaded subroutines

and associated variables.

Initially, all computed results are invalid. When the user asks for n to be

computed, the system finds that it is invalid, and so it calls routine G, which

produces n as output. As G runs, it asks for j. j is an input to a subroutine

called during the computation of n, so n depends on j. The system finds that j

is invalid, so it calls for routine B to run. This calls for c and d, and shows that

n depends on c and d, too. Note, though, that c and d have been called during

140

the computation of j, so it is also true that j depends on c and d. Now that

the computation of j is complete, C continues to run, and asks for k. Hence,

n depends on k. Routine C is called to produce k, so k depends on e, and n

depends on e. Finally, routine C is resumed once more, and runs to completion.

The consistency information is summarised in Table A.1. All other variables

remain invalid, and their dependency sets are still unknown.

Variable

71

J
k

Dependency Set Validity

{j,c,d,k,e} Valid

{ c,d} Valid

{e} Vahd

Table A. 1: Summary of consistency information.

Now consider the case where k is computed first. Routine C is called to

produce k, which shows that k depends on e. When n is computed, routines

G and B are run as before, but when the system asks for k it finds that it is

valid, and there is no need to run routine C. The system still has to find out

that n depends on e. This is done by grafting the dependency set for the valid

variable onto the dependency set for the variable currently being computed. In

the example, the dependency set for k, which is {e}, is grafted to the partial set

for n, which is {j,c,d,k} to produce the correct set for n, {j,c,d,k,e}.

The determination of dependence relationships is made more complicated

by the local specification of variables through the use of the PUSH command.

PUSH fixes the value of a variable while a certain calculation is performed, but

when the calculation is finished, the fixed value is removed from the database.

A good example of the use of local specification is provided by the calculation of

drag. Drag depends on local flight conditions (density and airspeed), so its value

changes throughout a flight, and density and airspeed must be specified at the

correct local conditions whenever drag is calculated. When drag is calculated

quasi-procedurally, density and airspeed are PUSHed by the routine which re-

quests drag. The problem is that variables which depend on drag do not depend

on density and airspeed , because they are associated with a specified density

141

ill iI

and a specifiedairspeed.Considerthe caseof rangeand secondsegmentclimb,

shownin Fig. A.6.

Range
.,.

! Specify Initial Cruise
Push MachNo
Push Altitude

! Get Initial Cruise Drag

Get Drag

Get Altitude

Get...MachNo Ii_at Drag

2nd Seg Climb

! Specify 2nd Seg Climb

Push MachNo
Push Altitude

!Get 2nd Seg Climb Drag

Get Drag

m

Figure A.6: Partial dependence in quasi-procedural consistency maintenance.

Normally, when range is being computed, the dependence algorithm would

add Altitude (associated with density) and MachNo (associated with airspeed)

to the dependence set for Range. Similarly, Altitude and MachNo would be

included in the dependence set for SccondSegmentClimb. This would mean

that Range would be invalidated whenever SecondSegmentClimb is computed,

and vice versa. This problem is avoided by adding a requested variable to

the dependence set for the variable being computed only if it is not currently

PUSHed.

When the dependence sets are known for the computed variables, it is a

simple matter to find invalidities. Whenever a specified variable is changed, all

the dependence sets are searched. Any computed variable which has the modified

variable as an element of its dependence set is labelled as invalid, because its

value is inconsistent with the newly specified value.

142

In practice, it is more efficient to make dependence sets between analysis

routines rather than between variables. Analysis routines typically have sev-

eral inputs, and these are grouped as one element in the dependence set for the

routine, so the searching is reduced. This slightly changes the consistency main-

tenance scheme. Now, the validity of a variable is ascertained by checking the

validity of the routine which calculates it. Invalidities are propagated by first

invalidating any routine which has the modified input as an input, and then

invalidating any routine which has one of these routines in its dependence set.

Finally, there may be partial dependence between routines, when some inputs

are pushed and others are not. Consider the case of Range and Drag. It has

been shown above that Range does not depend on some inputs to the DRAG

routine: Altitude and MachNo. However, Drag also depends on many other

inputs, such as WingArea. A modification to WingArea should invalidate

Range. Where there is partial dependence, the subroutine is included in the

dependence set with the variables that axe exceptions appended. Thus, DRAG

is included in the dependence set for RANGE, but Altitude and MachNo are

noted as exceptions.

Dependence Set for Range

DRAG (Partial) Altitude MachNo

RANGE

etc.

When dependence relationships have been established, they can be used to

propagate invalidities arising from modification of input variables. A flow dia-

gram for this updating of consistency information is presented in Fig. A.7. The

first step in the update scheme is to invalidate each subroutine that has the

modified variable as a direct input. The second step, which is iterative, invali-

dates all subroutines that depend on invalid subroutines. Validity information is

then available for all output variables, and variables not affected by the modified

input do not require re-execution of analyses.

143

First invalidate

routines which
have VarMod as

an input

Then invalidate

routines that

depend on
invalidated

routines from
above.

[#Invalid = 0]

I 1._Number--of Routines
-_ do '=, -]

"_ do j=l, Nun'k_er-of-Inputs-for-Roufine_i)]

(Input(j) = VarMod. ,_ Y Validity(Routine(i)) = Invalid

/ #Invalid = #Invalid + 1

I , N InvaHdRoufine_#lnvalid) = Routine{i)

I
1

--_do i=l, #invalid

"_do j--l, Number-of-Routines]

Dependence ?a[u

validRoutine(i) 9 J_ _."
N

N

do k=l,#Exceptions]

I , y
xception(k) = VarMod ? "_-

continu: N]

!

d

I
r

-1 !

[Validity(Routine(j)) = Invalid]

Figure A.7: Updating consistency information when input variable VarMod has

been modified.

144

Appendix B

A Genetic Optimization

Package

The software described in this appendix allows both fixed- length and variable-

length encodings. Successful applications to wing design (aerodynamics), truss

design (structures), and interplanetary trajectory problems are described in the

body of the thesis. It was originally based on a PASCAL listing from Gold-

berg [22], which used simple genetic operators and allowed only fixed-length

binary encodings. The new algorithm is written in standard Fortran77, and has

been run on Macintosh, IBM RS6000, Sun Sparc stations and SGI workstations.

Its structure is outlined in Fig. B. 1.

B.1 Operators of Genetic Optimization

Representation Each individual is represented by a string, which is a coded

listing of tl_e values of the design variables. The entire string is analogous to

a chromosome, with genes for the different features (or variables). It is the

genotype of the design. The design that is represented by the design variable

values that are decoded fron the string is the phenotype. Binary, integer or

real representations of the variables are all possible, and the 'best' encoding is

problem-dependent. In this software, each string position is an integer. The

145

Read tnl_la.
User-mpplied MAIN program
i_i_alizes par_ne, ter settings
(by reading from input fde).

upper and lower bounds on
design variables _ constraints.

Call GENALG

1
Gener_e initial populaUon.

Generate new Individual [

Randomly selected values]_
R

for all variables,]

½
Viable?

Us_-suppficd sul_'out_ N._,._o
I CHECKER used to eosure that

individualc_nbeanal_ Ilncrementindividuall
, [b_inggenerated]

Assem performance.
Usec-supplied subroutine GOAJ._A

used to assess fitness of new individual

No

I Full population ge_aeratedT I

Gmerate new population.
alll II III II

G_rate new Individual
Select parents for rqwoductio_.
Perform cros_ver and mutation ii

Viable? No
User-supplied subroutine

CHECKER used to e_are that IL_rem¢__di._l
individual can be anal_zed. [being generated]

Assess performance.
User-supplied subroutine GOALGA

used to assess fitness of new individual.
I

I _u pop_Lmo,g_r.Ud: i _o
Yes

Update output fdes

[Maximmn nmnber of [
NO

Figure B. 1" Flow diagram for genetic software.

146

user chooses how many positions will be used for each variable (nbits), and the

range of possible values for each position (rnggen). The string must be decoded

to form design variables appropriate for use in the analysis domain (Fig. B.2).

cpg Decoding the kth variable of population member i

cpg nbits = 1 -> integer encoding, otherwise binary

if (nbits .eq. i) then

tmpvar = chrom(i,k)

else

tmpvar = 0

do 17 k4=l,nbits

jl=((k-l)*nbits)+k4

tmpvar=tmpvar+chrom(i,jl)*(2**(nbits-k4))

17 continue

endif

cpg

cpg

Convert integer tmpvar to real var, and modify scale

to be appropriate for analysis domain

var(i,k)=scalemin(k) + scalerange(k)*tmpvar/rnggen

Figure B.2: Pseudo-code for decoding a genetic string.

Selection and replacement This is the non-random operator in genetic

search. The promising members of the current population are favoured to con-

tribute to new designs. In this software, selection is performed by tournament.

A number of population members are chosen at random to compete for the

right to reproduce, and the individual with highest fitness wins the tournament

(Fig. B.3). There is a separate tournament (with new randomly chosen competi-

tors from the existing population) each time a parent is required. When there

is a large number of competitors in the tournament, the current best are more

strongly favoured. The default tournament size is 2 (ktourn = 2).

The best member of the existing population is always retained in the new

population (it does not need to be selected in a tournament). This means that

the 'best of all generations' is always present in the latest generation, so it is

easily identified when the program terminates.

147

10

bestvalue = -i00.

do i0 i=l, ktourn

call rndgen(ain,rand)

candidate = int(rand*popsiz) + 1

if (fitns(candidate) .ge. bestvalue)

bestvalue = fitns(candidate)

k = candidate

endif

continue

then

Figure B.3: Pseudo-code for tournament selection.

The initial population is currently generated at random (no selection can be

applied at the start of optimization). Future versions will allow user-specified

initial population. This would allow re-start from the final population of a

previous search. It would also allow an experienced user to bias the search

toward regions of expected high performance.

Crossover Crossover is an operation that forms new individuals from com-

binations of parts of parent strings. It is a powerful operator for recombining

usehfl building blocks from different designs. This software uses a single-point

crossover, meaning that each parent string is disrupted at only one point. At

the point of crossover, the value of the variable is changed, according to the

difference between values in the parents. When strings of varying length are

allowed, the crossover point may be different for the two parents, and offspring

of different sizes may be produced (Fig. B.4).

Mutation Pointwise mutation is performed on the offspring. Each point in

each string has a chance of being mutated (Fig. B.5). The size of the resulting

mutation is random, up to a user-specified maximum, RngMut.

Species formation In some problem domains it is desirable to locate several

local minima, particularly if secondary minima are almost as good as the global

148

!i !

if (rand .le. pcross) then

cpg Select crossover point in ist parent

cpg (which has string length kllength)

call rndgen(ain,rand)

n=int(rand*kllength)+l

if (n .gt. kllength) n=kllength

cpg Locate position of crossover point within substring (kloff)

kloff = n - (int(n/(Ichrom*nbits))*Ichrom*nbits)

cpg If variable-length strings are used, select crossover

cpg point in 2nd parent

if (.not. growth) then

n2 = n

else

call rndgen(ain,rand)

n2=int(rand*k21ength)

if (n2 .ge. k21ength) n2=k21ength-I

cpg Force 2nd crossover point to have same position within substring

cpg as ist crossover point (kloff)

n2 = ((n2/(Ichrom*nbits))*ichrom*nbits) + kloff

endif

cpg Retain encoding of Ist parent Cup to crossover point n)

cpg Mutate variable at location n.

call rndgen(ain, rand)

tmpmut = rand * rngcross*abs((real(chrom(i,n)-chrom(i+l,n2)))

call rndgen(ain,rand)

if (rand .it. 0.5) then

chrom(i,n)=chrom(i,n) + int(tmpmut)

else

chrom(i,n)=chrom(i,n) - int(tmpmut)

endif

cpg Append encoding from 2nd parent (after crossover point n2).

translength = k21ength - n2

do 52 counter = i, translength

chrom(i,n+counter)=chrom(i+l,n2+counter)

52 continue

endif

Figure B.4: Pseudo-code for crossover.

149

do 60 j=l,ltchrm

call rndgen(ain,rand)

cpg Each point in string has small chance of being mutated

if (rand .le. pmutn) then

if (nbits .gt. I) then

cpg For binary string, mutation simply flips the bit value

chrom(i,j)=l-chrom(i,j)

else

cpg For integer string, mutation size is random

cpg (up to user-specified maximum: rngmut)

call rndgen(ain,rand)

tmpmut = rand * rnggen * rngmut

call rndgen(ain, rand)

if (rand .It. 0.5) then

chrom(i,j)=chrom(i,j) + int(tmpmut)

if (chrom(i,j) .gt. rnggen)

> chrom(i,j) = chrom(i,j) - int(rnggen)

else

chrom(i,j)=chrom(i,j) - int(tmpmut)

if (chrom(i,j) .It. 0)

> chrom(i,j)=chrom(i,j) + int(rnggen)

endif

endif

endif

60 continue

Figure B.5: Pseudo-code for mutation.

150

!1 :I

minimum. Choicebetweentheselocal optima may be madeby consideringfac-

tors not modelled in the optimization task. In these cases,the introduction

of a sharing parameter can help to induce 'species' formation during genetic

optimization. Basically, this operator degradesthe fitness of population mem-
bers which have many other membersnearby (in phenotype space),so that it

is unattractive for the entire population to crowd together around the global

optimum. The amount of degradationand the definition of 'nearby' canbe con-

trolled by the user. Description of sharingoperator can be found in Chapter

3.

B.2 The Optimization Problem

The standard form for an optimization problem is to minimize an objective

function, J, while satisfying a set of constraints, G, by changing the values of

a set of design variables, X. The user must supply a subroutine to calculate

objective and constraints (GOALGA). The design variables and fitness measure

(which is a function of objective and constraints) must be passed between this

routine and the genetic optimizer

In the genetic algorithm, the variables are represented as integer or binary

strings. They must be decoded for use in the design domain, as described in the

previous section.

Some problems may allow genetic strings which describe designs that cannot

be analysed. (One example arises in wing design, where the wing is modelled by

a vortex-lattice system. Vortex strength cannot be evaluated for designs that

place vortices too close to control points.). A problem-dependent subroutine

CHECKER is used to check viability, with non-viable designs being discarded

before inclusion in the population. The population always consists of designs

that can be analysed.

The software package includes a dummy CHECKER routine which simply

returns viable = true. The user can introduce more elaborate checks on viability

when necessary, by modifying CHECKER. This is intended to be used prior to

151

complete analysisof the new offspring, and should be much cheaper than the

full analysis.

The objective must be minimization of somescalar function, but the mini-

mum must be positive (geneticalgorithm doesn't work with objective values i

0). The objective is passedfrom the GOALGA routine to the optimizer, where

it is convertedto fitness (usedin selectionoperation) :

Fitness = 1/(1 + objective)

High fitness means high likelihood of reproduction, so this conversion makes

designs with low objective likely to propagate into the next generation. It also

guarantees fitness measures in the range 0 -L 1. Scaling of the objective in

the GOALGA routine (to O(1)) will ensure that fitness is calculated with good

precision.

Constraints are most easily handled by appending penalties to the objective

function calculated in GOALGA. It is important to select the penalty weight

carefully. If it is too heavy, selection strongly favours designs that simply satisfy

constraints, and the population can converge to a sub-optimal design. If the

weight is too light, an infeasible design will be favoured.

The care required for efficient use of penalties makes it desirable to avoid

using them where possible. One alternative constraint-handling technique is

to 'repair' a candidate design so that it satisfies constraints before evaluating

its performance. Repair has been successfully implemented in a wing design

problem, where the aim is to minimise drag while constrained to generate a

fixed total lift. The incidence of the entire wing can be adjusted to satisfy this

constraint before drag is calculated, and the relative incidences of different wing

sections are design variables which allow adjustment of the distribution of lift

to reduce drag.

When growth is allowed, constraint activity can change during optimization.

Variable values that are favoured (selected) when a constraint is not active may

not be appropriate when the design grows and makes it active. (An example

of this is for wing dihedral variables and "span constraints. When the span

constraint is not active, low dihedral is favoured, and when the max span is

152

_i !i

reachedthere is no diversity of wing dihedral remaining in the population, and

it canbe difficult to discoverwinglets). To handle this situation, the algorithm

allowsmultiple entries for eachdesignvariable in the genetic string (usersets

Nredun). A change in constraint activity can cause different entries to be

expressed. The constraint activity that causes expression of different entries

must be described in subroutine CHECKER.

The genetic algorithm has no guaranteed termination criterion, so there is

nothing like Kuhn-Tucker conditions to indicate when search is finished. The

search is typically run for a prescribed number of function evaluations or gener-

ations. The user sets MaxCalc and MaxGen in the input file.

The optimum may not have been reached when the program terminates.

When optimization performed from several different random starting popula-

tions produces similar final results, the user can be confident that the best

design has been located. In fact, genetic algorithms are efficient at getting close

to the optimum, but not very good at finding it exactly. It is often better

to re-start several times and run with moderate population sizes and numbers

of generations, rather than relying on a single very large run. The number of

repetitions is set by Nseed in the input file.

B.3 Input and Output

genalg.inp Genetic algorithm parameters must be set before the genetic al-

gorithm is run. It is convenient to list the desired settings in an input file

(genalg.inp) that is read by the main program before the genetic algorithm is

called.

nGA.out n = RunNumber x 100

This output file gives an optimization history by generation. It lists generation

number, best member of population, worst value in population, best value in

pop_ation, average value in population and number of identical members in

population.

153

nGA.Ist n = RunNumber x 100

This output file records the design variables of the best member in the population

whenever those variables change. It also records the parents from which the new

member was constructed. The last line records the total number of function

evaluations in the run.

Npop.out N = RunNumber x 1000 + GenerationNumber

This output file records the design variables for the population members in a

given generation. Entire intermediate populations can be saved during opti-

mization. Pgen sets the gap between saved generations, and P fraction allows

partial generations to be saved (P fraction x popsiz individuals are saved).

B.4

Growth

User-Specified Input Parameters

(0 - off, 1 - on)

Nbits Number of bits for each variable. If a single integer representation is

used, nbits = 1.

RngCen The number of distinct values the variable can attain. This is 2"bits-

1 if binary representation is used. Decoding of variables : min+ (vatue/rnggen)*

(max - rain)

PopSiz Population size (Maximum is 1000, can be changed by changing MaxPop

parameter in genalg.inc).

MaxGen Maximum generations (Maximum is 500, can be changed by chang-

ing LimGen parameter in genalg.inc)

MaxCalc Maximum number of ruction evaluations.

Pc'ross Probability of crossover. Usually 0.7 to 0.9

154

il I

RngCross Range of Crossover (multiple of difference between parent values).

Usually 2.

Pmutn Probability of mutation of each location in the string. The value will

be different for integer and binary representations. Generally, choose a value to

produce about 0.1% 1 mutations per string.

RngMut The maximum amount by which the mutation can change the value

of the variable (as a multiple of RngGen). For binary representation, this is

automatically 0.5 (flipping the most significant bit).

Lchrom This is the number of variables in a 'block'. When growth is not used,

this should be equal to total variables (they are all in one block).

Nseed This is the number of repetitions to be performed for the same problem.

Because the method is probabilistic, several repetitions should be run.

ktourn This is the number of population members that compete to be a parent

in each reproduction operation.

OutUnit Unit number for printing to screen. 6 in standard Fortran, 9 for

MacFortran

MaxVars Maximum number of variables. The total number of variables for

fixed-length representations.

Pgen Number of generations between files recording population. Filenames

have form: (iseed • 1000 + gen)//'pop.ou_.

P fraction Fraction of population to be recorded at Pgen generations.

155

Nredun Number of representations of each variable. User explains how to

choose between alternative values in the CHECKER routine. For fixed com-

plexity optimization, nredun = 1.

Npeaks Number of expected local minima. This affects the range over which

crowding factor will be applied (higher npeaks -L smaller range of crowding

penalty) Unless sharing is used, Npeaks = 1.

Sscale Severity of crowding penalty. Default = 1.

SigFac Scale factor for range (in phenotype space) over which the crowding

penalty should be applied. Default = 0.5. Smaller reduces the distance for

which the crowding penalty is applied.

alpha Exponent for severity of crowding penalty as function of distance be-

tween individuals. Default = 1, corresponding to linear decrease in penalty with

distance. Higher values mean swifter reduction in penalty as distance increases.

MinMax Minimum and maximum bounds for each variable. There should

be a minimum and maximum for nbIock variables, where nblock is the number

of variables in a building block (total number of variables when complexity is

fixed). Nblock = lchrom/nbits.

B.5 User-Supplied Subroutines

Subroutine GOALGA This routine is the interface between the genetic al-

gorithm and the domain-specific analyses. It takes design variable values from

the genetic algorithm as input. If any constraints are handled by repair, they

are evaluated first, and the design is modified as necessary. The objective is

then evaluated. If any constraints are handled by penalty, they are evaluated

last, and penalties are appended to the objective. The final objective value

is output to the genetic algorithm. Evaluation generally requires execution of

156

domain-specificanalysesthat are called from GOALGA. All necessaryanalyses

must be provided by the user.

Subroutine CHECKER This routine is used to check that the candidate

design can be analysed (Viable = true) before computation is attempted. If

all possible candidates are analyzable, there is no need to check viability, and

the simple CHECKER subroutine included in the software package can be used.

The routine is also used to control the expression of multiple entries in the

genetic string. (This feature is rarely employed, and can easily be ignored by

inexperienced users.)

157

i!i ii

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

Ashley, H., "On Making Things the Best - Aeronautical Uses of Optimiza-

tion", Journal of Aircraft, vol. 19, pp 5-28, Jan 1982.

Haftka, R.T.; Grossman, B.; Mason, W.H., "Multidisciplinary Aircraft De-

sign: An Underutilized Capability", p B60, Aerospace America, July 1994.

Nicolai, L.M., Fundamentals of Aircraft Design, METS, Inc., 1975.

Gallman, J.W. "Aerodynamic and Structural Optimization of Joined-Wing

Aircraft," Stanford PhD Thesis, June 1992.

Torenbeek, E., Synthesis of Subsonic Airplane Design, Delft University

Press, 1982.

Shevell, R.; Kroo, I., "Introduction to Aerospace Systems Design Synthesis

and Analysis", Course Notes, Department of Aeronautics and Astronautics,

Stanford University, 1989.

De Filippo, R., "ACSY'NT Users' Guide", Northrop Aircraft, 1983.

Rowel], L.F., "The Environment for Application Software Integration and

Execution (EASIE) Version 1.0 - Volume 1 - Executive Overview", NASA

TM-100573, August 1988.

Tong, S.S., "Coupling Artificial Intelligence and Numerical Computation

for Engineering Design (Invited Paper)." AIAA 24th _ Aerospace Sciences

Meeting, Jan 6-9, 1986, Reno, Nv, AIAA-86-0242

158

[10]

[11]

[12]

[13]

[14]

[15]

Tong, S.S., "Turbine Preliminary Design Using Artificial Intelligence and

Numerical Optimization Techniques." Journal of Turbomachinery, January

1992, Vol 114/1.

Bil, C., Development and application of a computer-based system .for con-

ceptual aircraft design, Delft University Press, 1988.

Cousin, J.; Metcalfe, M., "The BAe (Commercial Aircraft) Ltd Transport

Aircraft Synthesis and Optimization Program" AIAA/AHS/ASEE Aircraft

Design, Systems and Operations Conference, Sept 17-19, 1990, Dayton, OH,

AIAA-90-3295

Myklebust, A.; Gelhausen, P., "Putting the ACSYNT on Aircraft Design",

pp 26-30, Aerospace America, September 1994.

Elias, A.L., "Knowledge Engineering of the Aircraft Design Process," in

Knowledge Based Problem Solving, Kowalik, J., Ed., Prentice-Hall, 1986.

Kolb, M., "A Flexible Computer Aid for Conceptual Design Based on Con-

straint Propagation and Component-Modelling", AIAA/AHS/ASEE Air-

craft Design, Systems and Operations Meeting, Atlanta, September 7-9,

1988. AIAA-88-4427

[16] Takai, M., "A New Architecture and Expert System for Aircraft Design

Synthesis," Stanford Ph.D. Thesis, June 1990.

[17] Kroo, I., Takai, M., "A Quasi-Procedural, Knowledge-Based System for

Aircraft Design", AIAA/AHS/ASEE Aircraft Design, Systems and Opera-

tions Meeting, Atlanta, September 7-9, 1988. AIAA-88-4428

L

[18] Kroo, I., Takai, M., "Aircraft Design Optimization Using a Quasi-

Procedural Method and Expert System", Third Air Force/NASA Sympo-

sium on Recent Advances in Multidisciplinary Analysis and Optimization,

San Francisco, September 24-26, 1990.

[19] Arora, J.S., Introduction to Optimum Design, McGraw-Hill 1989.

159

ili 11!

[2o]

[21]

[22]

[23]

Arora, J.S.; Baenziger, G., "Uses of Artificial Intelligence in Design Opti-

mization" Computer Methods in Applied Mechanics and Engineering, Vol

54, pp 303-323 1986.

Rogers, J.L.; Barthelemy, J.-F. M., "An Expert System for Choosing the

Best Combination of Options in a General Purpose Program for Automated

Design Synthesis" Engineering with Computers, 1, pp 217-227 1986.

Goldberg, D., Genetic Algorithms in Search, Optimization, and Machine

Learning, Addison Wesley, 1989.

KrishnaKumar, K.; Swaminathan, R.; and Montgomery, L.; "Multiple

Near-Optimal Solutions for a Structural Control Problem Using a Genetic

Algorithm with Niching," AIAA 93-3873, in AIAA Guidance, Navigation

and Control Conference, Technical Papers Pt 3, Monterey, CA, August

1993.

[24]

[25]

[26]

[27]

KrishnaKumar, K., Goldberg, D., "Genetic Algorithms in Control System

Optimization", AIAA Guidance, Navigation and Control Conference, Au-

gust 20-22, 1990, Portland, OR.

Hajela, P., "Genetic Search - An Approach to the Nonconvex Optimization

Problem',AIAA Journal, Vol 28, No. 7, 1990.

Bramlette, M., Cusic, R., "A Comparative Evaluation of Search Methods

Applied to the Parametric Design of Aircraft", Proceedings of the Third

International Conference on Genetic Algorithms, Morgan Kaufmann, 1989.

Crispin, Y., "Aircraft Conceptual Optimization Using Simulated Evolu-

tion", 32nd Aerospace Sciences Meeting, Reno, NV, Jan 10-13, 1994. AIAA

94-0092

[28] Hutchison, M.G., Unger, E.R., Mason, W.H., Grossman, B., Haftka, R.T.,

"Variable-Complexity Aerodynamic Optimization of an HSCT Wing Us-

ing Structural Wing-Weight Equations." 30th Aerospace Sciences Meeting,

Reno, NV, Jan 6-9, 1992. AIAA 92-0212

160

[29]

[3o]

[31]

[32]

[34]

[35]

[36]

[3T]

Gallman, J.W., Kroo, I.M., Smith, S.C., "Design Synthesis and Optimiza-

tion of Joined-Wing Transports", AIAA/AHS/ASEE Aircraft Design, Sys-

tems and Operations Conference, Sept. 17-19, 1990, Dayton, OH AIAA-90-

3197

Gallman, J.W., Kroo, I.M., "Structural Optimization for Joined-Wing Syn-

thesis," Fourth AIAA/USAF/NASA/OAI Symposium on Multidisciplinary

Analysis and Optimization, Cleveland, September 21-23, 1992. AIAA-92-

4761

Gill, P.E., Murray, W., Saunders, M.A., Wright, M.H., "User's Guide for

NPSOL (Version 4.0): A Fortran Package for Nonlinear Programming,"

Technical Report SOL 86-2, Department of Operations Research, Stanford

University, Jan. 1986

Gill, P.E., Murray, W., Wright, M.H., Practical Optimization, Academic

Press, 1981.

Haftka, R.T., Gurdal, Z., Kamat, M.P., Elements o/Structural Optimiza-

tion, Second Revised Edition. Kluwer Academic Press, 1990

Luenberger, D.G. Linear and Nonlinear Programming, Addison-Wesley,

1984.

Vanderplaats, G.N., Numerical Optimization Techniques .for Engineering

Design: With Applications, McGraw-Hill, 1984.

Kroo, I., Wakayama, S., "Nonlinear Aerodynamics and the Design of

Wingtips", Final Report, NASA Grant NCC2-683, April, 1992.

Martens, P., "Airplane Sizing Using Implicit Mission Analysis", AIAA 94-

4406 AIAA/NASA/USAF/ISSMO Symposium on Multidisciplinary Anal-

ysis and Optimization, Panama City, FL, Sept 7-9, 1994.

Paisley, D., Martens, P., "Thoughts on the QPM Conversion Tool", Per-

sonal Communication, Auto, st, 1993.

161

[39]

[4O]

[41]

[42]

[43]

[44]

[45]

[46]

Dixon, L. "Use of Automatic Differentiation for Calculating Hessians

and Newton Steps", in Automatic Differentiation of Algorithms: The-

ory, Implementation, and Application Ed. Griewank, A., Corliss, G., SIAM,

Philadelphia, 1991.

Bischof, C., Carle, A., Corliss, G., Griewank, A., Hovland, P., " ADIFOR:

Generating derivative codes from Fortran programs", Scientific Program-

ming, 1(1):1-29, 1992.

Kroo, I.; Gage, P.; Altus, S.; Bischoff, C.; Hovland, P.; "New Approaches to

Multidisciplinary Optimization," Distributed Computing for Aerosciences

Applications, NASA Ames Research Center, October 18-20, 1993.

Kroo, I., Altus, S., Braun, R., Gage, P., Sobieski, I., "Multidisciplinary

Optimization Methods for Aircraft Preliminary Design", AIAA 94-4325

AIAA/NASA/USAF/ISSMO Symposium on Multidisciplinary Analysis

and Optimization, Panama City, FL, Sept 7-9, 1994.

McMasters, J.H., "Reflections of a Paleoaerodynamicist", Perspectives in

Biology and Medicine 29, 3, Part 1, Spring 1986.

Caldwell, C., Johnston, V., "Tracking a Criminal Suspect Through 'Face-

Space' with a Genetic Algorithm", Proceedings of the Fourth International

Conference on Genetic Algorithms, Ed. Belew, R., Booker, L., Morgan

Kaufmann, 1991.

Kosak, C., Marks, J., Shieber, S., "A Parallel Genetic Algorithm for

Network-Diagram Layout", Proceedings of the Fourth International Confer-

ence on Genetic Algorithms, Ed. Belew, 1%, Booker, L., Morgan Kaufmann,

1991.

Syswerda, S., Palmucci, J., "The Application of Genetic Algorithms to

Resource Scheduling", Proceedings of the Fourth International Conference

on Genetic Algorithms, Ed. Belew, R., Booker, L., Morgan Kaufmann,

1991.

162

[47]

[48]

[49]

[5o]

[51]

[52]

[53]

[54]

[55]

[56]

Jones, D., Beltramo, M., "Solving Partitioning Problems with Genetic Al-

gorithms", Proceedings of the Fourth International Conference on Cenetic

Algorithms, Ed. Belew, R., Booker, L., Morgan Kaufmann, 1991.

Back, T., Hoffmeister, F., Schwefel, H.-P., "A Survey of Evolution Strate-

gies", Proceedings of the Fourth International Conference on Genetic Al-

gorithms, Ed. Belew, R., Booker, L., Morgan Kaufmarm, 1991.

Dawkins, R., The Blind Watchmaker, Norton, 1986.

van Laarhoven, P.J.M., Aarts, E.H.L., Simulated Annealing: Theory and

Applications, Reidel, 1987.

Davidor, Y., "Epistasis Variance: A Viewpoint on GA-Hardness", in Foun-

dations of Genetic Algorithms, ed. Rawlins, G., Morgan Kaufmann, 1991.

Liepins, G., Vose, M., "Deceptiveness and Genetic Algorithm Dynamics",

in Foundations of Genetic Algorithms, ed. Rawlins, G., Morgan Kaufmann,

i991.

McCulley, C., Bloebaum, C.L., "Optimal Sequencing for Com-

plex Engineering Systems Using Genetic Algorithms", AIAA 94-4325

AIAA/NASA/USAF/ISSMO Symposium on Multidisciplinary Analysis

and Optimization, Panama City, FL, Sept 7-9, 1994.

Goldberg, D., "Sizing Populations for Serial and Parallel Genetic Algo-

rithms", Proceedings, 3rd International Conference on Genetic Algorithms,

1989.

Richardson, J.T., Palmer, M.R., Liepins, G., Hilliard, M., "Some Guide-

lines for Genetic Algorithms with Penalty Functions", Proceedings, 3rd

International Conference on Genetic Algorithms, 1989.

Tate, D.M., Smith, A.E., "Dynamic Penalty Methods for Highly Con-

strained Genetic Optimization", submitted to ORSA Journal on Comput-

ing, August 1993.

163

[57]

[58]

[59]

[6o]

[61]

[62]

[63]

[64]

[65]

Michalewicz, Z., Janikow, C., "Handling Constraints in Genetic Algo-

rithms", Proceedings of the Fourth International Conference on Genetic

Algorithms, Ed. Belew, R., Booker, L., Morgan Kaufmann, 1991.

Janikow, C., Michalewicz, Z., "An Experimental Comparison of Binary and

Floating Point Representations in Genetic Algorithms", Proceedings of the

Fourth International Conference on Genetic Algorithms, Ed. Belew, R.,

Booker, L., Morgan Kaufmann, 1991.

Koza, J.R. Genetic Programming: On the Programming of Computers by

Means of Natural Selection Cambridge, MA: MIT Press, 1992.

Syswerda, G., "Uniform Crossover in Genetic Algorithms", Proceedings of

the Third International Conference on Genetic Algorithms, Morgan Kauf-

mann, 1989.

Grefenstette, J., "Optimization of Control Parameters for Genetic Al-

gorithms", IEEE Transactions on Systems, Man and Cybernetics, SMC-

16(1):122-128, 1986.

Goldberg, D.; Richardson, J.; "Genetic Algorithms with Sharing for Multi-

modal Function Optimization", Proceedings of the 2nd International Con-

ference on Genetic Algorithms, ed. Grefenstette, J.J., Lawrence Erlbaum

Associates, 1987.

Deb, K.; Goldberg, D.; "An Investigation of Niche and Species Formation

in Genetic Function Optimization", Proceedings of the Third International

Conference on Genetic Algorithms, Morgan Kaufmann, 1989.

Hong, P.E.; Kent, P.D.; Olson, D.W.; and Vallado, C.A.; "Interplanetary

Program to Optimize Simulated Trajectories," Volume I - User's Guide,

NASA CR-189653, Martin Marietta Astronautics, October 1992.

Friedlander, A.L.; "MULIMP, Multi-Impulse Trajectory and Mass Opti-

mization Program," Report SAI 1-120-383-T4, Science Applications, Inc.,

April 1975.

164

[66]

[67]

[68]

[69]

[70]

[71]

Horsewood, J.; Suskin, M.; and Isley, J.; "MANE, Mission Analysis Envi-

ronment for Heliocentric High-Thrust Missions," Version 1.0, AdaSoft, Inc.,

Sept. 1993.

Mead, C.W.; Jones, M.F.; "Optimization of Ephemeridal Parameters for

Minimum Propellant Requirements on Multiplanet Roundtrip Swingby-

Stopover Missions," TM 54/30-189, LMSC/HREC A791436, Lockheed Mis-

siles & Space Company, May 1968.

Goldberg, D.; "Real-coded Genetic Algorithms, Virtual Alphabets and

Blocking _', University of Illinois at Urbana-Champaign, Technical Report

No. 90001, September 1990.

Braun R.D.; "The Influence of Interplanetary Trajectory Options on a

Chemically Propelled Manned Mars Mission," The Journal of the Astro-

nautical Sciences, Vol 38, No. 3, July-September 1990, pp 289-310.

Hoffman, S.J.; McAdams, J.V.; and Niehoff, J.C.; "Round Trip Trajectory

Options for Human Exploration of Mars," AAS Paper 89-201, AAS/NASA

International Symposium on Orbital Mechnics and Mission Design, Vol. 69,

Advances in the Astronautical Sciences, Greenbelt, MD, April 24-27, 1989.

Striepe, S.A.; Braun, R.D.; Powell, R.W.; and Fowler, W.T.; "Influence of

Interplanetary Trajectory Selection on Earth Atmospheric Entry Velocity of

Mars Missions," Journal of Spacecraft & Rockets, Vol. 30, No. 4, July-Aug.

1993, pp. 420-425.

Striepe, S.A.; Braun, R.D.; Powell, R.W.; and Fowler, W.T.; "Influence of

Interplanetary Trajectory Selection on Mars Atmospheric Entry Velocity,"

Journal of Spacecraft & Rockets, Vol. 30, No. 4, July-Aug. 1993, pp. 426-

430.

Walberg, G.; "How Shall We Go To Mars?, A Review of Mission Scenar-

ios," AIAA Paper 92-0481, 30th AIAA Aerospace Sciences Meeting, Reno,

Nevada, January, 1992.

165

!I |!

[75]

[77]

[78]

[80]

Is1]

[82]

IS3]

Braun, R.D.; and Blersch, D.J.; "Propulsive Options for a Manned Mars

Transportation System," Journal of Spacecraft & Rockets, Vol. 28, No. 1,

Jan.-Feb. 1991, pp. 85-92.

Lyne, J.E.; and Braun, R.D.; "Flexible Strategies for Manned Mars Mis-

sions Using Aerobraking and Nuclear Thermal Propulsion," The Journal of

Astronautical Sciences, Vol. 41, No. 3, July-Sept., 1993, pp. 339-347

"Space Transfer Concepts and Analysis for the Exploration Missions," Final

Report, Contract NAS8-37857, Boeing Defense and Space Group, Advanced

Civil Space Systems, Huntsville, AL, December 1991.

Gould, S.J. Ever Since Darwin: Reflections in Natural History, Norton,

1977.

Sakamoto, J.; Oda, J. "A Technique of Optimal Layout Design for Truss

Structures Using Genetic Algorithm", AIAA 93-1582, Proc. SDM 93, pp.

2402-2408.

Grierson, D.; Pak, W. "Optimal Sizing, Geometrical and Topological Design

Using a Genetic Algorithm", Structural Optimization 6, 151-159 (1993)

Grierson, D.; Pak, W. "Discrete Optimal Design Using a Genetic Algo-

rithm", in Topology Design of Structures, ed Bendsoe, M.P.; Mota Soares,

C.A.; Kluwer Academic, 1993.

Koumousis, V. "Layout and Sizing Design of Civil Engineering Structures

in Accordance with the Eurocodes", in Topology Design of Structures, ed

Bendsoe, M.P.; Mota Soares, C.A.; Kluwer Academic, 1993.

Hajela, P.; Lee, E.; Lin, C.-Y. "Genetic Algorithms in Structural Topology

Optimization", in Topology Design of Structures, ed Bendsoe, M.P.; Mota

Soares, C.A.; Kluwer Academic, 1993.

Smith, S.F. "A Learning System Based On Genetic Adaptive Algorithms"

PhD thesis, University of Pittsburgh, 1980.

166

[84]

[85]

[86]

[88]

[89]

[9o]

[91]

[92]

[93}

Holland, J. Adaptation in Natural and Artificial Systems University of

Michigan Press, 1975.

De Jong, K., "Learning with Genetic Algorithms: An Overview" Machine

Learning 3: 121-138, 1988.

Goldberg, D.E., Korb, B., Deb, K. "Messy Genetic Algorithms: Motivation,

Analysis and First Results", TCGA Report 89003, May 1989.

Goldberg, D.E., Deb, K, Korb, B. "An Investigation of Messy Genetic

Algorithms", TCGA Report 90005, May i990.

Chirehdast, M., Hae, C.G., Kikuchi, N., Papalambros, P.Y., "Further

Advances in the Integrated Structural Optimization System (ISOS)",

AIAA 92-4817, Fourth AIAA/USAF/NASA/OAI Symposium on Multi-

disciplinary Analysis and Optimization, September 21-23, 1992, Cleve-

land,OH.

Sankaranarayanan, S., Haftka, R.t., Kapania, R.K., "Truss Topology Op-

timization with Simultaneous Analysis and Design", AIAA 92-2315, Proc

SDM 92, pp. 2576-2585.

Bendsoe, M.P., Kikuchi, N., "Generating Optimal Topologies in Structural

Design Using a Homogenization Method", Computer Methods in Applied

Mechanics and Engineering 71 (1988) pp. 197-224.

Przemieniecki, J.S. Theory of Matrix Structural Analysis Dover, 1985.

Goldberg, D.; Samtani, M. "Engineering Optimization Via Genetic Algo-

rithm", in Electronic Computation: Proceedings of the Ninth Conference on

Electronic Computation, ASCE, 1986.

Mitchell, T.M. "The Need for Biases in Learning Generalizations", in Read-

ings in Machine Learning, ed Shavlik, J.W.; Dietterich, T.G.; Morgan Kauf-

mann, 1990.

167

[94] Reddy, G.M., Cagan, J. "Optimally Directed Truss Topology Generation

Using Shape Annealing", DE-Vol. 65-1, Advances in Design Automation -

Volume 1, ASME 1993 p749-759.

[95] Michel], A.G.M. "The Limits of Economy of Material in Frame-

Structures.", Phil. Mag. (6), 8, 589 (1904)

[96] Morris, S. "Integrated Aerodynamic and Control System Design of Oblique

Wing Aircraft", Stanford Ph.D. Thesis, January 1990.

[97] Wakayama, S. "Lifting Surface Design Using Multidisciplinary Optimiza-

tion", Stanford Ph.D. Thesis, December 1994.

[98] Giunta, A.A. et al "Noisy Aerodynamic Response and Smooth Approx-

imations in HSCT Design." AIAA/NASA/USAF/ISSMO Symposium on

Multidisciplinary Analysis and Optimization, Panama City, FL, Sept 7-9,

1994. AIAA 94-4376

[99] Unger, E.R., Hall, L.E., "The Use of Automatic Differentiation in an Air-

craft Design Problem." AIAA/NASA/USAF/ISSMO Symposium on Mul-

tidisciplinary Analysis and Optimization, Panama City, FL, Sept 7-9, 1994.

AIAA 94-4260

[100] Kroo, I. M., "A Discrete Vortex Weissinger Method for Rapid Analysis

of Lifting Surfaces," Desktop Aeronautics, P. O. Box 9937, Stanford, CA

94305, August 1987.

[101] Kroo, I. "A General Approach to Multiple Lifting Surface Design and

Analysis", AIAA-84-2507, AIAA/AHS/ASEE Aircraft Design, Systems

and Operations Meeting, San Diego, CA, October 1984.

[102] yon Karman, T.; Burgers, J. "Airfoils and Airfoil Systems of Finite Span",

Vol II of Aerodynamic Theory, div. E, ch. IV, sec. 17, W.F. Durand, ed.

Springer (Berlin) 1935.

[103] Juliff, P. Program Design Prentice-Hall 1986.

168

Form Approved

REPORT DOCUMENTATION PAGE oMsNo o;'o4-o188
Public reportingburden for this collectionof information is estimated to average I hour per response, includingthe time for reviewinginstructions,searching existingdata sources,
gathering and maintaining the data needed, and completingand reviewingthe collectionof information. Send commentsregardingthis burden estimateor any other aspect of this
collection of information,includingsuggestionsfor reducingthisburden, to WashingtonHeadquarters Services,Directoratefor informationOperations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington,VA 22202-4302, and to the Office of Management and Budget,Paperwork ReductionProject (0704-0188), Washington, DC 20503.

iii

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

March 1995 Contractor Report
4. TITLE AND SUBTITLE

New Approaches to Optimization in Aerospace Conceptual Design

6. AUTHOR(S)

Peter J. Gage

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Stanford University

Department of Aeronautics and Astronautics

Stanford, CA 94305

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Washington, DC 20546-0001

5. FUNDING NUMBERS

505-69-50

8. PERFORMING ORGANIZATION
REPORT NUMBER

A-950044

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA CR- 196695

11. SUPPLEMENTARY NOTES

Point of Contact: Hiro Muira, Ames Research Center, MS 237-11, Moffett Field, CA 94035-1000;
(415) 604-5888

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified -- Unlimited

Subject Category 05

12b. DISTRIBUTION CODE

13. ABSTRACT (Max/mum 200 words)

Aerospace design can be viewed as an optimization process, but conceptual studies are rarely performed

using formal search algorithms. Three issues that restrict the success of automatic search are identified in this

work. New approaches are introduced to address the integration of analyses and optimizers, to avoid the need

for accurate gradient information and a smooth search space (required for calculus-based optimization), and to

remove the restrictions imposed by fixed complexity problem formulations. 1) Optimization should be

performed in a flexible environment. A quasi-procedural architecture is used to conveniently link analysis

modules and automatically coordinate their execution. It efficiently controls large-scale design tasks. 2) Genetic
algorithms provide a search method for discontinuous or noisy domains. The utility of genetic optimization is

demonstrated here, but parameter encodings and constraint-handling schemes must be carefully chosen to avoid

premature convergence to suboptimal designs. The relationship between genetic and calculus-based methods is

explored. 3) A variable-complexity genetic algorithm is created to permit flexible parameterization, so that the

level of description can change during optimization. This new optimizer automatically discovers novel designs
in structural and aerodynamic tasks.

14. SUBJECT TERMS

Aerospace design, Calculus-based optimization, Genetic optimization,

Constraint-handling, Program architecture

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION
OF REPORT OF THIS PAGE

Unclassified Unclassified

NSN 7540-01-280-'5566

19. SECURITY CLASSIFICATION
OF ABSTRACT

15. NUMBER OF PAGES

187
16. PRICE CODE

A09
20. LIMITATION OF ABSTRACT

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18

_i | F

